Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Polynomial Convexity (eBook)

(Autor)

eBook Download: PDF
2007 | 2007
X, 439 Seiten
Birkhäuser Boston (Verlag)
978-0-8176-4538-0 (ISBN)

Lese- und Medienproben

Polynomial Convexity - Edgar Lee Stout
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This comprehensive monograph details polynomially convex sets. It presents the general properties of polynomially convex sets with particular attention to the theory of the hulls of one-dimensional sets. Coverage examines in considerable detail questions of uniform approximation for the most part on compact sets but with some attention to questions of global approximation on noncompact sets. The book also discusses important applications and motivates the reader with numerous examples and counterexamples, which serve to illustrate the general theory and to delineate its boundaries.


This book is devoted to an exposition of the theory of polynomially convex sets.Acompact N subset of C is polynomially convex if it is de?ned by a family, ?nite or in?nite, of polynomial inequalities. These sets play an important role in the theory of functions of several complex variables, especially in questions concerning approximation. On the one hand, the present volume is a study of polynomial convexity per se, on the other, it studies the application of polynomial convexity to other parts of complex analysis, especially to approximation theory and the theory of varieties. N Not every compact subset of C is polynomially convex, but associated with an arbitrary compact set, say X, is its polynomially convex hull, X, which is the intersection of all polynomially convex sets that contain X. Of paramount importance in the study of polynomial convexity is the study of the complementary set X / X. The only obvious reason for this set to be nonempty is for it to have some kind of analytic structure, and initially one wonders whether this set always has complex structure in some sense. It is not long before one is disabused of this naive hope; a natural problem then is that of giving conditions under which the complementary set does have complex structure. In a natural class of one-dimensional examples, such analytic structure is found. The study of this class of examples is one of the major directions of the work at hand.

Preface.
Introduction. Polynomial convexity. Uniform algebras. Plurisubharmonic fuctions. The Cauchy-Fantappiè Integral. The Oka—Weil Theorem. Some examples. Hulls with no analytic structure.-
Some General Properties of Polynomially Convex Sets. Applications of the Cousin problems. Two characterizations of polynomially convex sets. Applications of Morse theory and algebraic topology. Convexity in Stein manifolds.-
Sets of Finite Length. Introduction. One-dimensional varieties. Geometric preliminaries. Function-theoretic preliminaries. Subharmonicity results. Analytic structure in hulls. Finite area. The continuation of varieties.-
Sets of Class A1. Introductory remarks. Measure-theoretic preliminaries. Sets of class A1. Finite area. Stokes’s Theorem. The multiplicity function. Counting the branches.-
Further Results. Isoperimetry. Removable singularities. Surfaces in strictly pseudoconvex boundaries.-
Approximation. Totally real manifolds. Holomorphically convex sets. Approximation on totally real manifolds. Some tools from rational approximation. Algebras on surfaces. Tangential approximation.-
Varieties in Strictly Pseudoconvex Domains. Interpolation. Boundary regularity. Uniqueness.-
Examples and Counter Examples. Unions of planes and balls. Pluripolar graphs. Deformations. Sets with symmetry.-
Bibliography. Index.

Erscheint lt. Verlag 28.7.2007
Reihe/Serie Progress in Mathematics
Progress in Mathematics
Zusatzinfo X, 439 p.
Verlagsort Boston
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Analysis
Technik
Schlagworte Complex Analysis • convex hull • Convexity • Functional Analysis • polynomial convexity • polynomial hulls • Pseudoconvexity • subharmonic function
ISBN-10 0-8176-4538-1 / 0817645381
ISBN-13 978-0-8176-4538-0 / 9780817645380
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich