Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Mirror Geometry of Lie Algebras, Lie Groups and Homogeneous Spaces (eBook)

(Autor)

eBook Download: PDF
2006 | 2004
XVII, 312 Seiten
Springer Netherland (Verlag)
978-1-4020-2545-7 (ISBN)

Lese- und Medienproben

Mirror Geometry of Lie Algebras, Lie Groups and Homogeneous Spaces - Lev V. Sabinin
Systemvoraussetzungen
53,49 inkl. MwSt
(CHF 52,25)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
As K. Nomizu has justly noted [K. Nomizu, 56], Differential Geometry ever will be initiating newer and newer aspects of the theory of Lie groups. This monograph is devoted to just some such aspects of Lie groups and Lie algebras. New differential geometric problems came into being in connection with so called subsymmetric spaces, subsymmetries, and mirrors introduced in our works dating back to 1957 [L.V. Sabinin, 58a,59a,59b]. In addition, the exploration of mirrors and systems of mirrors is of interest in the case of symmetric spaces. Geometrically, the most rich in content there appeared to be the homogeneous Riemannian spaces with systems of mirrors generated by commuting subsymmetries, in particular, so called tri-symmetric spaces introduced in [L.V. Sabinin, 61b]. As to the concrete geometric problem which needs be solved and which is solved in this monograph, we indicate, for example, the problem of the classification of all tri-symmetric spaces with simple compact groups of motions. Passing from groups and subgroups connected with mirrors and subsymmetries to the corresponding Lie algebras and subalgebras leads to an important new concept of the involutive sum of Lie algebras [L.V. Sabinin, 65]. This concept is directly concerned with unitary symmetry of elementary par- cles (see [L.V. Sabinin, 95,85] and Appendix 1). The first examples of involutive (even iso-involutive) sums appeared in the - ploration of homogeneous Riemannian spaces with and axial symmetry. The consideration of spaces with mirrors [L.V. Sabinin, 59b] again led to iso-involutive sums.
As K. Nomizu has justly noted [K. Nomizu, 56], Differential Geometry ever will be initiating newer and newer aspects of the theory of Lie groups. This monograph is devoted to just some such aspects of Lie groups and Lie algebras. New differential geometric problems came into being in connection with so called subsymmetric spaces, subsymmetries, and mirrors introduced in our works dating back to 1957 [L.V. Sabinin, 58a,59a,59b]. In addition, the exploration of mirrors and systems of mirrors is of interest in the case of symmetric spaces. Geometrically, the most rich in content there appeared to be the homogeneous Riemannian spaces with systems of mirrors generated by commuting subsymmetries, in particular, so called tri-symmetric spaces introduced in [L.V. Sabinin, 61b]. As to the concrete geometric problem which needs be solved and which is solved in this monograph, we indicate, for example, the problem of the classification of all tri-symmetric spaces with simple compact groups of motions. Passing from groups and subgroups connected with mirrors and subsymmetries to the corresponding Lie algebras and subalgebras leads to an important new concept of the involutive sum of Lie algebras [L.V. Sabinin, 65]. This concept is directly concerned with unitary symmetry of elementary par- cles (see [L.V. Sabinin, 95,85] and Appendix 1). The first examples of involutive (even iso-involutive) sums appeared in the - ploration of homogeneous Riemannian spaces with and axial symmetry. The consideration of spaces with mirrors [L.V. Sabinin, 59b] again led to iso-involutive sums.

Table of contents. On the artistic and poetic fragments of the book. Introduction.
PART ONE. 1.1. Preliminaries, 1.2. Curvature tensor of involutive pair. Classical involutive pairs of index, 1.3. Iso-involutive sums of Lie algebras. 1.4. Iso-involutive base and structure equations, 1.5. Iso-involutive sums of types 1 and 2, 1.6. Iso-inolutive sums of lower index 1, 1.7. Principal central involutive automorphism of type U, 1.8. Principal unitary involutive automorphism of index I.
PART TWO. 11.1. Hyper-involutive decomposition of a simple compact
Lie algebra, 11.2. Some auxiliary results, 11.3. Principal involutive automorphisms of type 0, 11.4. Fundamental theorem, 11.5. Principal di-unitary involutive automorphism, 11.6. Singular principal di-unitary involutive automorphism,
11.7. Mono-unitary non-central principal involutive automorphism, 11.8. Principal involutive automorphism of types f and e, 11.9. Classification of simple special unitary subalgebras, 11.10. Hyper-involutive reconstruction of basic decompositions
11.11. Special hyper-involutive sums.
PART THREE, 111.1. Notations, definitions and some preliminaries, 111.2. Symmetric spaces of rank 1, 111.3. Principal symmetric spaces, 111.4. Essentially special symmetric spaces, 111.5. Some theorems on simple compact Lie groups,
111.6. Tn-symmetric and hyper-tri-symmetric spaces, 111. 7. Tn-symmetric spaces with exceptional compact groups, 111.8. Tn-symmetric spaces with groups of motions SO(n), Sp(n), SU(n).
PART FOUR, IV.1. Subsymmetric Riemannian homogeneous spaces, IV.2. Subsymmetric homogeneous spaces and Lie algebras, IV.3. Mirror subsymmetric Lie triplets of Riemannian type , IV.4. Mobile mirrors. Iso-involutive decompositions, IV.5. Homogeneous Riemannian spaces with two-dimensional mirrors, IV.6. Homogeneous Riemannian space with groups SO(n), SU(3) and two-dimensional mirrors, IV.7. Homogeneous Riemannian spaces with simple compact Lie groups G SO(n), SU(3) and two-dimensional mirrors, IV.8. Homogeneous Riemannian spaces with simple compact Lie group of motions and two-dimensional immobile mirrors .
Appendix 1. On the structure of T, U, V-isospins in the theory of higher symmetry,
Appendix 2. Description of contents, Appendix 3. Definitions, Appendix 4. Theorems
Bibliography, Index.

Erscheint lt. Verlag 21.2.2006
Reihe/Serie Mathematics and Its Applications
Mathematics and Its Applications
Zusatzinfo XVII, 312 p.
Verlagsort Dordrecht
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Technik
Schlagworte brandonwiskunde • Curvature • Differential Geometry • Lie algebra • Lie group • Riemannian manifold
ISBN-10 1-4020-2545-9 / 1402025459
ISBN-13 978-1-4020-2545-7 / 9781402025457
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 10,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich