M-Solid Varieties of Algebras (eBook)
XIV, 342 Seiten
Springer US (Verlag)
978-0-387-30806-7 (ISBN)
A complete and systematic introduction to the fundamentals of the hyperequational theory of universal algebra, offering the newest results on solid varieties of semirings and semigroups. The book aims to develop the theory of solid varieties as a system of mathematical discourse that is applicable in several concrete situations. A unique feature of this book is the use of Galois connections to integrate different topics.
M-Solid Varieties of Algebras provides a complete and systematic introduction to the fundamentals of the hyperequational theory of universal algebra, offering the newest results on M-solid varieties of semirings and semigroups. The book aims to develop the theory of M-solid varieties as a system of mathematical discourse that is applicable in several concrete situations. It applies the general theory to two classes of algebraic structures, semigroups and semirings. Both these varieties and their subvarieties play an important role in computer science.A unique feature of this book is the use of Galois connections to integrate different topics. Galois connections form the abstract framework not only for classical and modern Galois theory, involving groups, fields and rings, but also for many other algebraic, topological, ordertheoretical, categorical and logical theories. This concept is used throughout the whole book, along with the related topics of closure operators, complete lattices, Galois closed subrelations and conjugate pairs of completely additive closure operators.
Preface Chapter 1
Basic Concepts
1.1 Subalgebras and Homomorphic Images
1.2 Direct and Subdirect Products
1.3 Term Algebras, Identities, Free Algebras
1.4 The Galois Connection (Id,Mod) Chapter 2
Closure Operators and Lattices
2.1 Closure Operators and Kernel Operators
2.2 Complete Sublattices of a Complete Lattice
2.3 Galois Connections and Complete Lattices
2.4 Galois Closed Subrelations
2.5 Conjugate Pairs of Additive Closure Operators Chapter 3
M-Hyperidentities and M-solid Varieties
3.1 M-Hyperidentities
3.2 The Closure Operators
3.3 M-Solid Varieties and their Characterization
3.4 Subvariety Lattices and Monoids of Hypersubstitutions
3.5 Derivation of M-Hyperidentities Chapter 4
Hyperidentities and Clone Identities
4.1 Menger Algebras of Rank n
4.2 The Clone of a Variety Chapter 5
Solid Varieties of Arbitrary Type
5.1 Rectangular Algebras
5.2 Solid Chains Chapter 6
Monoids of Hypersubstitutions
6.1 Basic Definitions
6.2 Injective and Bijective Hypersubstitutions
6.3 Finite Monoids of Hypersubstitutions of Type (2)
6.4 The Monoid of all Hypersubstitutions of Type (2)
6.5 Green’s Relations on Hyp(2)
6.6 Idempotents in Hyp(2, 2)
6.7 The Order of Hypersubstitutions of Type (2, 2)
6.8 Green’s Relations in Hyp(n, n)
6.9 The Monoid of Hypersubstitutions of Type (n)
6.10 Left-Seminearrings of Hypersubstitutions Chapter 7
M-Solid Varieties of Semigroups
7.1 Basic Concepts onM-Solid Varieties of Semigroups
7.2 Regular-solid Varieties of Semigroups
7.3 Solid Varieties of Semigroups
7.4 Pre-solid Varieties of Semigroups
7.5 Locally Finite and Finitely Based M-solid Varieties Chapter 8
M-solid Varieties of Semirings
8.1 Necessary Conditions for Solid Varieties of Semirings
8.2 The Minimal Solid Variety of Semirings
8.3 The Greatest Solid Variety of Semirings
8.4 The Lattice of all Solid Varieties of Semirings
8.5 Generalization of Normalizations
8.6 All Pre-solid Varieties of Semirings Bibliography Glossary Index
Erscheint lt. Verlag | 18.6.2006 |
---|---|
Reihe/Serie | Advances in Mathematics | Advances in Mathematics |
Zusatzinfo | XIV, 342 p. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge |
Informatik ► Theorie / Studium ► Compilerbau | |
Mathematik / Informatik ► Mathematik ► Algebra | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Technik | |
Schlagworte | Algebraic Structure • Clone identity • Hyperidentity • Hypersubstitution • Menger Algebra • Monoid • M-solid variety |
ISBN-10 | 0-387-30806-7 / 0387308067 |
ISBN-13 | 978-0-387-30806-7 / 9780387308067 |
Haben Sie eine Frage zum Produkt? |
Größe: 15,5 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich