Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Introductory Differential Equations -  Martha L. Abell,  James P. Braselton

Introductory Differential Equations (eBook)

with Boundary Value Problems
eBook Download: PDF
2009 | 3. Auflage
744 Seiten
Elsevier Science (Verlag)
978-0-08-095845-3 (ISBN)
Systemvoraussetzungen
128,42 inkl. MwSt
(CHF 125,45)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This text is for courses that are typically called (Introductory) Differential Equations, (Introductory) Partial Differential Equations, Applied Mathematics, Fourier Series and Boundary Value Problems. The text is appropriate for two semester courses: the first typically emphasizes ordinary differential equations and their applications while the second emphasizes special techniques (like Laplace transforms) and partial differential equations. The texts follows a 'traditional' curriculum and takes the 'traditional' (rather than 'dynamical systems') approach.

Introductory Differential Equations is a text that follows a traditional approach and is appropriate for a first course in ordinary differential equations (including Laplace transforms) and a second course in Fourier series and boundary value problems. Note that some schools might prefer to move the Laplace transform material to the second course, which is why we have placed the chapter on Laplace transforms in its location in the text. Ancillaries like Differential Equations with Mathematica and/or Differential Equations with Maple would be recommended and/or required ancillaries depending on the school, course, or instructor.

*Technology Icons
These icons highlight text that is intended to alert students that technology may be used intelligently to solve a problem, encouraging logical thinking and application
* Think About It Icons and Examples
Examples that end in a question encourage students to think critically about what to do next, whether it is to use technology or focus on a graph to determine an outcome
*Differential Equations at Work
These are projects requiring students to think critically by having students answer questions based on different conditions, thus engaging students

Martha L. Abell and James P. Braselton are graduates of the Georgia Institute of Technology and the Ohio State University, respectively, and teach at Georgia Southern University, Statesboro where they have extensive experience in Mathematica-assisted instruction at both the undergraduate and graduate levels. In addition, they have given numerous presentations on Mathematica, throughout the United States and abroad. Other books by the authors include Differential Equations with Mathematica, Second Edition and Statistics with Mathematica. Martha became Dean of the College of Science and Mathematics at Georgia Southern University in 2014.
This text is for courses that are typically called (Introductory) Differential Equations, (Introductory) Partial Differential Equations, Applied Mathematics, Fourier Series and Boundary Value Problems. The text is appropriate for two semester courses: the first typically emphasizes ordinary differential equations and their applications while the second emphasizes special techniques (like Laplace transforms) and partial differential equations. The texts follows a "e;traditional"e; curriculum and takes the "e;traditional"e; (rather than "e;dynamical systems"e;) approach. Introductory Differential Equations is a text that follows a traditional approach and is appropriate for a first course in ordinary differential equations (including Laplace transforms) and a second course in Fourier series and boundary value problems. Note that some schools might prefer to move the Laplace transform material to the second course, which is why we have placed the chapter on Laplace transforms in its location in the text. Ancillaries like Differential Equations with Mathematica and/or Differential Equations with Maple would be recommended and/or required ancillaries depending on the school, course, or instructor. - Technology Icons - These icons highlight text that is intended to alert students that technology may be used intelligently to solve a problem, encouraging logical thinking and application- Think About It Icons and Examples - Examples that end in a question encourage students to think critically about what to do next, whether it is to use technology or focus on a graph to determine an outcome- Differential Equations at Work - These are projects requiring students to think critically by having students answer questions based on different conditions, thus engaging students
Erscheint lt. Verlag 9.9.2009
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Analysis
Technik
ISBN-10 0-08-095845-1 / 0080958451
ISBN-13 978-0-08-095845-3 / 9780080958453
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich