Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Introduction to Statistical Pattern Recognition -  Keinosuke Fukunaga

Introduction to Statistical Pattern Recognition (eBook)

eBook Download: EPUB
2013 | 2. Auflage
592 Seiten
Elsevier Science (Verlag)
978-0-08-047865-4 (ISBN)
Systemvoraussetzungen
56,37 inkl. MwSt
(CHF 54,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This completely revised second edition presents an introduction to statistical pattern recognition. Pattern recognition in general covers a wide range of problems: it is applied to engineering problems, such as character readers and wave form analysis as well as to brain modeling in biology and psychology. Statistical decision and estimation, which are the main subjects of this book, are regarded as fundamental to the study of pattern recognition. This book is appropriate as a text for introductory courses in pattern recognition and as a reference book for workers in the field. Each chapter contains computer projects as well as exercises.
This completely revised second edition presents an introduction to statistical pattern recognition. Pattern recognition in general covers a wide range of problems: it is applied to engineering problems, such as character readers and wave form analysis as well as to brain modeling in biology and psychology. Statistical decision and estimation, which are the main subjects of this book, are regarded as fundamental to the study of pattern recognition. This book is appropriate as a text for introductory courses in pattern recognition and as a reference book for workers in the field. Each chapter contains computer projects as well as exercises.

Cover 1
Frontmatter 5
Half Title Page 5
Title Page 7
Copyright 8
Dedication 9
Table of Contents 11
Preface 15
Acknowledgments 17
Chapter 1: Introduction 19
1.1 Formulation of Pattern Recognition Problems 19
1.2 Process of Classifier Design 25
Notation 27
References 28
Chapter 2: Random Vectors and Their Properties 29
2.1 Random Vectors and Their Distributions 29
2.2 Estimation of Parameters 35
2.3 Linear Transformation 42
2.4 Various Properties of Eigenvalues and Eigenvectors 53
Computer Projects 65
Problems 66
References 68
Chapter 3: Hypothesis Testing 69
3.1 Hypothesis Tests for Two Classes 69
3.2 Other Hypothesis Tests 83
3.3 Error Probability in Hypothesis Testing 103
3.4 Upper Bounds on the Bayes Error 115
3.5 Sequential Hypothesis Testing 128
Computer Projects 137
Problems 138
References 140
Chapter 4: Parametric Classifiers 142
4.1 The Bayes Linear Classifier 143
4.2 Linear Classifier Design 149
4.3 Quadratic Classifier Design 171
4.4 Other Classifiers 187
Computer Projects 194
Problems 195
References 198
Chapter 5: Parameter Estimation 199
5.1 Effect of Sample Size in Estimation 200
5.2 Estimation of Classification Errors 214
5.3 Holdout, Leave-One-Out, and Resubstitution Methods 237
5.4 Bootstrap Methods 256
Computer Projects 268
Problems 268
References 270
Chapter 6: Nonparametric Density Estimation 272
6.1 Parzen Density Estimate 273
6.2 k Nearest Neighbor Density Estimate 286
6.3 Expansion by Basis Functions 305
Computer Projects 313
Problems 314
References 315
Chapter 7: Nonparametric Classification and Error Estimation 318
7.1 General Discussion 319
7.2 Voting kNN Procedure - Asymptotic Analysis 323
7.3 Voting kNN Procedure - Finite Sample Analysis 331
7.4 Error Estimation 340
7.5 Miscellaneous Topics in the kNN Approach 369
Computer Projects 380
Problems 381
References 382
Chapter 8: Successive Parameter Estimation 385
8.1 Successive Adjustment of a Linear Classifier 385
8.2 Stochastic Approximation 393
8.3 Successive Bayes Estimation 407
Computer Projects 413
Problems 414
References 415
Chapter 9: Feature Extraction and Linear Mapping for Signal Representation 417
9.1 The Discrete Karhunen-Loéve Expansion 418
9.2 The Karhunen-Loéve Expansion for Random Processes 435
9.3 Estimation of Eigenvalues and Eigenvectors 443
Computer Projects 453
Problems 456
References 458
Chapter 10: Feature Extraction and Linear Mapping for Classification 459
10.1 General Problem Formulation 460
10.2 Discriminant Analysis 463
10.3 Generalized Criteria 478
10.4 Nonparametric Discriminant Analysis 484
10.5 Sequential Selection of Quadratic Features 498
10.5 Feature Subset Selection 507
Computer Projects 521
Problems 522
References 524
Chapter 11: Clustering 526
11.1 Parametric Clustering 527
11.2 Nonparametric Clustering 551
11.3 Selection of Representatives 567
Computer Projects 577
Problems 578
References 580
Backmatter 582
Appendix A: Derivatives of Matrices 582
Appendix B: Mathematical Formulas 590
Appendix C: Normal Error Table 594
Appendix D: Gamma Function Table 596
Index 597
About the Author 615
Back Cover 616

Erscheint lt. Verlag 22.10.2013
Sprache englisch
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 0-08-047865-4 / 0080478654
ISBN-13 978-0-08-047865-4 / 9780080478654
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Discover the smart way to polish your digital imagery skills by …

von Gary Bradley

eBook Download (2024)
Packt Publishing (Verlag)
CHF 29,30
Explore powerful modeling and character creation techniques used for …

von Lukas Kutschera

eBook Download (2024)
Packt Publishing (Verlag)
CHF 42,20
Generate creative images from text prompts and seamlessly integrate …

von Margarida Barreto

eBook Download (2024)
Packt Publishing (Verlag)
CHF 31,65