Nicht aus der Schweiz? Besuchen Sie lehmanns.de
MIMO Wireless Communications -  Bruno Clerckx,  Claude Oestges

MIMO Wireless Communications (eBook)

From Real-World Propagation to Space-Time Code Design
eBook Download: PDF
2010 | 1. Auflage
480 Seiten
Elsevier Science (Verlag)
978-0-08-054998-9 (ISBN)
Systemvoraussetzungen
81,95 inkl. MwSt
(CHF 79,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Uniquely, this book proposes robust space-time code designs for real-world wireless channels. Through a unified framework, it emphasizes how propagation mechanisms such as space-time frequency correlations and coherent components impact the MIMO system performance under realistic power constraints. Combining a solid mathematical analysis with a physical and intuitive approach to space-time coding, the book progressively derives innovative designs, taking into consideration that MIMO channels are often far from ideal.

The various chapters of this book provide an essential, complete and refreshing insight into the performance behaviour of space-time codes in realistic scenarios and constitute an ideal source of the latest developments in MIMO propagation and space-time coding for researchers, R&D engineers and graduate students.

Features include
. Physical models and analytical representations of MIMO propagation channels, highlighting the strengths and weaknesses of various models
. Overview of space-time coding techniques, covering both classical and more recent schemes under information theory and error probability perspectives
. In-depth presentation of how real-world propagation affects the capacity and the error performance of MIMO transmission schemes
. Innovative and practical designs of robust space-time coding, precoding and antenna selection techniques for realistic propagation (including single-carrier and MIMO-OFDM transmissions)

This book offers important insights into how space-time coding can be tailored for real-world MIMO channels. The discussion of MIMO propagation models is also intuitive and well-developed.
Arogyaswami J. Paulraj, Professor, Stanford University, CA

Finally a book devoted to MIMO from a new perspective that bridges the boundaries between propagation, channel modeling, signal processing and space-time coding. It is of high reference value, combining intuitive and conceptual explanations with detailed, stringent derivations of basic facts of MIMO.
Ernst Bonek, Emeritus Professor, Technische Universit?t Wien, Austria

* Presents space-time coding techniques for real-world MIMO channels
* Contains new design methodologies and criteria that guarantee the robustness of space-time coding in real life wireless communications applications
* Evaluates the performance of space-time coding in real world conditions
Uniquely, this book proposes robust space-time code designs for real-world wireless channels. Through a unified framework, it emphasizes how propagation mechanisms such as space-time frequency correlations and coherent components impact the MIMO system performance under realistic power constraints. Combining a solid mathematical analysis with a physical and intuitive approach to space-time coding, the book progressively derives innovative designs, taking into consideration that MIMO channels are often far from ideal.The various chapters of this book provide an essential, complete and refreshing insight into the performance behaviour of space-time codes in realistic scenarios and constitute an ideal source of the latest developments in MIMO propagation and space-time coding for researchers, R&D engineers and graduate students.Features include* Physical models and analytical representations of MIMO propagation channels, highlighting the strengths and weaknesses of various models* Overview of space-time coding techniques, covering both classical and more recent schemes under information theory and error probability perspectives* In-depth presentation of how real-world propagation affects the capacity and the error performance of MIMO transmission schemes* Innovative and practical designs of robust space-time coding, precoding and antenna selection techniques for realistic propagation (including single-carrier and MIMO-OFDM transmissions)"e;This book offers important insights into how space-time coding can be tailored for real-world MIMO channels. The discussion of MIMO propagation models is also intuitive and well-developed."e;Arogyaswami J. Paulraj, Professor, Stanford University, CA"e;Finally a book devoted to MIMO from a new perspective that bridges the boundaries between propagation, channel modeling, signal processing and space-time coding. It is of high reference value, combining intuitive and conceptual explanations with detailed, stringent derivations of basic facts of MIMO."e; Ernst Bonek, Emeritus Professor, Technische Universitat Wien, Austria* Presents space-time coding techniques for real-world MIMO channels* Contains new design methodologies and criteria that guarantee the robustness of space-time coding in real life wireless communications applications* Evaluates the performance of space-time coding in real world conditions

Front Cover 1
MIMO Wireless Communications 4
Copyright Page 5
Contents 6
List of Figures 12
List of Tables 18
Preface 20
List of Abbreviations 22
List of Symbols 26
About the Authors 28
Chapter 1 Introduction to multi-antenna communications 30
1.1 Brief history of array processing 30
1.2 Space–time wireless channels for multi-antenna systems 31
1.3 Exploiting multiple antennas in wireless systems 35
1.3.1 Diversity techniques 35
1.3.2 Multiplexing capability 38
1.4 Single-input multiple-output systems 39
1.4.1 Receive diversity via selection combining 39
1.4.2 Receive diversity via gain combining 40
1.4.3 Receive diversity via hybrid selection/gain combining 43
1.5 Multiple-input single-output systems 44
1.5.1 Switched multibeam antennas 44
1.5.2 Transmit diversity via matched beamforming 44
1.5.3 Null-steering and optimal beamforming 45
1.5.4 Transmit diversity via space–time coding 46
1.5.5 Indirect transmit diversity 48
1.6 Multiple-input multiple-output systems 48
1.6.1 MIMO with perfect transmit channel knowledge 48
1.6.2 MIMO without transmit channel knowledge 51
1.6.3 MIMO with partial transmit channel knowledge 55
1.7 Multiple antenna techniques in commercial wireless systems 56
Chapter 2 Physical MIMO channel modeling 58
2.1 Multidimensional channel modeling 59
2.1.1 The double-directional channel impulse response 59
2.1.2 Multidimensional correlation functions and stationarity 64
2.1.3 Channel fading, K-factor and Doppler spectrum 66
2.1.4 Power delay and direction spectra 69
2.1.5 From double-directional propagation to MIMO channels 71
2.1.6 Statistical properties of the channel matrix 73
2.1.7 Discrete channel modeling: sampling theorem revisited 76
2.1.8 Physical versus analytical models 77
2.2 Electromagnetic models 78
2.2.1 Ray-based deterministic methods 78
2.2.2 Multi-polarized channels 80
2.3 Geometry-based models 82
2.3.1 One-ring model 83
2.3.2 Two-ring model 85
2.3.3 Combined elliptical-ring model 85
2.3.4 Elliptical and circular models 87
2.3.5 Extension of geometry-based models to dual-polarized channels 88
2.4 Empirical models 89
2.4.1 Extended Saleh-Valenzuela model 89
2.4.2 Stanford University Interim channel models 91
2.4.3 COST models 92
2.5 Standardized models 93
2.5.1 IEEE 802.11 TGn models 93
2.5.2 IEEE 802.16d/e models 94
2.5.3 3GPP/3GPP2 spatial channel models 95
2.6 Antennas in MIMO systems 95
2.6.1 About antenna arrays 95
2.6.2 Mutual coupling 96
Chapter 3 Analytical MIMO channel representations for system design 102
3.1 General representations of correlated MIMO channels 102
3.1.1 Rayleigh fading channels 103
3.1.2 Ricean fading channels 105
3.1.3 Dual-polarized channels 105
3.1.4 Double-Rayleigh fading model for keyhole channels 110
3.2 Simplified representations of Gaussian MIMO channels 110
3.2.1 The Kronecker model 111
3.2.2 Virtual channel representation 112
3.2.3 The eigenbeam model 114
3.3 Propagation-motivated MIMO metrics 116
3.3.1 Comparing models and correlation matrices 116
3.3.2 Characterizing the multipath richness 117
3.3.3 Measuring the non-stationarity of MIMO channels 122
3.4 Relationship between physical models and analytical representations 125
3.4.1 The Kronecker model paradox 125
3.4.2 Numerical examples 128
3.4.3 Comparison between analytical models: a system viewpoint 134
Chapter 4 Mutual information and capacity of real-world random MIMO channels 138
4.1 Capacity of fading channels with perfect transmit channel knowledge 139
4.2 Ergodic capacity of i.i.d. Rayleigh fast fading channels with partial transmit channel knowledge 143
4.3 Mutual information and capacity of correlated Rayleigh channels with partial transmit channel knowledge 152
4.3.1 Mutual information with equal power allocation 152
4.3.2 Ergodic capacity of correlated Rayleigh channels with partial transmit channel knowledge 158
4.4 Mutual information and capacity of Ricean channels with partial transmit channel knowledge 162
4.4.1 Mutual information with equal-power allocation 162
4.4.2 Ergodic capacity with partial transmit channel knowledge 164
4.5 Mutual information in some particular channels 165
4.5.1 Dual-polarized channels 165
4.5.2 Impact of antenna coupling on mutual information 167
4.6 Outage capacity and diversity-multiplexing trade-off in i.i.d. Rayleigh slow fading channels 170
4.6.1 Infinite SNR 171
4.6.2 Finite SNR 177
4.7 Outage capacity and diversity-multiplexing trade-off in semi-correlated Rayleigh and Ricean slow fading channels 180
Chapter 5 Space–time coding over i.i.d. Rayleigh flat fading channels 184
5.1 Overview of a space–time encoder 184
5.2 System model 185
5.3 Error probability motivated design methodology 186
5.3.1 Fast fading MIMO channels: the distance-product criterion 188
5.3.2 Slow fading MIMO channels: the rank-determinant and rank-trace criteria 189
5.4 Information theory motivated design methodology 192
5.4.1 Fast fading MIMO channels: achieving the ergodic capacity 192
5.4.2 Slow fading MIMO channels: achieving the diversity-multiplexing trade-off 194
5.5 Space–time block coding 199
5.5.1 A general framework for linear STBCs 200
5.5.2 Spatial multiplexing/V-BLAST 207
5.5.3 D-BLAST 219
5.5.4 Orthogonal space–time block codes 221
5.5.5 Quasi-orthogonal space–time block codes 227
5.5.6 Linear dispersion codes 231
5.5.7 Algebraic space–time codes 232
5.5.8 Global performance comparison 238
5.6 Space–time trellis coding 240
5.6.1 Space–time trellis codes 240
5.6.2 Super-orthogonal space–time trellis codes 250
Chapter 6 Error probability in real-world MIMO channels 252
6.1 A conditional pairwise error probability approach 252
6.1.1 Degenerate channels 252
6.1.2 The spatial multiplexing example 256
6.2 Introduction to an average pairwise error probability approach 259
6.3 Average pairwise error probability in Rayleigh fading channels 263
6.3.1 High SNR regime 263
6.3.2 Medium SNR regime 274
6.3.3 Low SNR regime 283
6.3.4 Summary and examples 284
6.4 Average pairwise error probability in Ricean fading channels 287
6.4.1 High SNR regime 288
6.4.2 Medium SNR regime 291
6.4.3 Low SNR regime 293
6.4.4 Summary and examples 294
6.5 Average pairwise error probability in dual-polarized channels 296
6.5.1 Performance of orthogonal space–time block coding 297
6.5.2 Performance of spatial multiplexing 299
6.6 Perspectives on the space–time code design in realistic channels 302
Chapter 7 Space–time coding over real-world MIMO channels with no transmit channel knowledge 304
7.1 Information theory motivated design methodology 304
7.2 Information theory motivated code design in slow fading channels 306
7.2.1 Universal code design criteria 306
7.2.2 MISO channels 310
7.2.3 Parallel channels 310
7.3 Error probability motivated design methodology 313
7.3.1 Designing robust codes 313
7.3.2 Average pairwise error probability in degenerate channels 314
7.3.3 Catastrophic codes and general design criteria 318
7.4 Error probability motivated code design in slow fading channels 325
7.4.1 Full-rank codes 325
7.4.2 Linear space–time block codes 325
7.4.3 Virtual channel representation based design criterion 329
7.4.4 Relationship with information theory motivated design 330
7.4.5 Practical code designs in slow fading channels 332
7.5 Error probability motivated code design in fast fading channels 342
7.5.1 'Product-wise' catastrophic codes 342
7.5.2 Practical code designs in fast fading channels 343
Chapter 8 Space–time coding with partial transmit channel knowledge 348
8.1 Introduction to channel statistics based precoding techniques 350
8.1.1 A general framework 350
8.1.2 Information theory motivated design methodologies 351
8.1.3 Error probability motivated design methodologies 352
8.2 Channel statistics based precoding for orthogonal space–time block coding 353
8.2.1 Optimal precoding in Kronecker Rayleigh fading channels 354
8.2.2 Optimal precoding in non-Kronecker Rayleigh channels 359
8.2.3 Optimal precoding in Ricean fading channels 360
8.3 Channel statistics based precoding for codes with non-identity error matrices 362
8.4 Channel statistics based precoding for spatial multiplexing 366
8.4.1 Beamforming 367
8.4.2 Constellation shaping 368
8.4.3 A non-linear approach to constellation shaping 376
8.4.4 Precoder design for suboptimal receivers 380
8.5 Introduction to quantized precoding and antenna selection techniques 381
8.6 Quantized precoding and antenna selection for dominant eigenmode transmissions 382
8.6.1 Selection criterion and codebook design in i.i.d. Rayleigh fading channels 383
8.6.2 Antenna selection and achievable diversity gain 384
8.6.3 How many feedback bits are required? 386
8.6.4 Selection criterion and codebook design in spatially correlated Rayleigh fading channels 386
8.7 Quantized precoding and antenna selection for orthogonal space–time block coding 387
8.7.1 Selection criterion and codebook design 388
8.7.2 Antenna subset selection and achievable diversity gain 389
8.8 Quantized precoding and antenna selection for spatial multiplexing 391
8.8.1 Selection criterion and codebook design 392
8.8.2 Impact of decoding strategy on error probability 393
8.8.3 Extension to multi-mode precoding 393
8.9 Information theory motivated quantized precoding 396
Chapter 9 Space–time coding for frequency selective channels 398
9.1 Single-carrier vs. multi-carrier transmissions 399
9.1.1 Single-carrier transmissions 399
9.1.2 Multi-carrier transmissions: MIMO-OFDM 400
9.1.3 A unified representation for single and multi-carrier transmissions 405
9.2 Information theoretic aspects for frequency selective MIMO channels 407
9.2.1 Capacity considerations 407
9.2.2 Mutual information with equal power allocation 408
9.2.3 Diversity-multiplexing trade-off 409
9.3 Average pairwise error probability 410
9.4 Code design criteria for single-carrier transmissions in Rayleigh fading channels 411
9.4.1 Generalized delay-diversity 411
9.4.2 Lindskog-Paulraj scheme 413
9.4.3 Alternative constructions 414
9.5 Code design criteria for space-frequency coded MIMO-OFDM transmissions in Rayleigh fading channels 415
9.5.1 Diversity gain analysis 415
9.5.2 Coding gain analysis 418
9.5.3 Space-frequency linear block coding 421
9.5.4 Cyclic delay-diversity 424
9.6 On the robustness of codes in spatially correlated frequency selective channels 428
9.6.1 Degenerate taps 428
9.6.2 Application to space-frequency MIMO-OFDM 430
Appendix A: Useful mathematical and matrix properties 432
Appendix B: Complex Gaussian random variables and matrices 434
B.1 Some useful probability distributions 434
B.2 Eigenvalues of Wishart matrices 435
B.2.1 Determinant and product of eigenvalues of Wishart matrices 435
B.2.2 Distribution of ordered eigenvalues 436
B.2.3 Distribution of non-ordered eigenvalues 436
Appendix C: Stanford University Interim channel models 438
Appendix D: Antenna coupling model 440
D.1 Minimum scatterers with regard to impedance parameters 440
D.1.1 Circuit representation 440
D.1.2 Radiation patterns 442
D.2 Minimum scatterers with regard to admittance parameters 444
Appendix E: Derivation of the average pairwise error probability 446
E.1 Joint space–time correlated Ricean fading channels 448
E.2 Space correlated Ricean slow fading channels 449
E.3 Joint space–time correlated Ricean block fading channels 450
E.4 I.i.d. Rayleigh slow and fast fading channels 451
Bibliography 452
Index 474
A 474
B 474
C 474
D 474
E 475
F 475
G 475
H 475
I 475
J 475
K 475
L 475
M 475
N 476
O 476
P 476
Q 476
R 476
S 476
T 477
U 477
V 477
W 477
Z 477

Erscheint lt. Verlag 27.7.2010
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Netzwerke
Technik Elektrotechnik / Energietechnik
Technik Nachrichtentechnik
ISBN-10 0-08-054998-5 / 0080549985
ISBN-13 978-0-08-054998-9 / 9780080549989
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 3,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das umfassende Handbuch

von Martin Linten; Axel Schemberg; Kai Surendorf

eBook Download (2023)
Rheinwerk Computing (Verlag)
CHF 29,20