Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Geotechnical Engineering Calculations and Rules of Thumb -  Ruwan Abey Rajapakse

Geotechnical Engineering Calculations and Rules of Thumb (eBook)

eBook Download: PDF
2011 | 1. Auflage
528 Seiten
Elsevier Science (Verlag)
978-0-08-055903-2 (ISBN)
Systemvoraussetzungen
81,26 inkl. MwSt
(CHF 79,35)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Geotechnical Engineering Calculations Manual offers geotechnical, civil and structural engineers a concise, easy-to-understand approach the formulas and calculation methods used in of soil and geotechnical engineering. A one stop guide to the foundation design, pile foundation design, earth retaining structures, soil stabilization techniques and computer software, this book places calculations for almost all aspects of geotechnical engineering at your finger tips. In this book, theories is explained in a nutshell and then the calculation is presented and solved in an illustrated, step-by-step fashion. All calculations are provided in both fps and SI units. The manual includes topics such as shallow foundations, deep foundations, earth retaining structures, rock mechanics and tunnelling. In this book, the author's done all the heavy number-crunching for you, so you get instant, ready-to-apply data on activities such as: hard ground tunnelling, soft ground tunnelling, reinforced earth retaining walls, geotechnical aspects of wetland mitigation and geotechnical aspects of landfill design.
•Easy-to-understand approach the formulas and calculations
•Covers calculations for foundation,earthworks and/or pavement subgrades
•Provides common codes for working with computer software
•All calculations are provided in both US and SI units

Ruwan Rajapakse is presently a project manager for STV Incorporated, one of the most prominent design firms in New York City. He has extensive experience in design and construction of piles and other geotechnical engineering work. He is a licensed professional engineer (PE) in New York and New Jersey and a certified construction manager (CCM). He is currently an adjunct professor at New Jersey Institute of Technology conducting the graduate level geotechnical engineering course. He is the author of four books including Geotechnical Engineering Calculations and Rule of Thumb and Pile Design and Construction Rules of Thumb by Butterworth-Heinemann.
Geotechnical Engineering Calculations and Rules of Thumb offers geotechnical, civil and structural engineers a concise, easy-to-understand approach the formulas and calculation methods used in of soil and geotechnical engineering. A one stop guide to the foundation design, pile foundation design, earth retaining structures, soil stabilization techniques and computer software, this book places calculations for almost all aspects of geotechnical engineering at your finger tips. In this book, theories is explained in a nutshell and then the calculation is presented and solved in an illustrated, step-by-step fashion. All calculations are provided in both fps and SI units. The manual includes topics such as shallow foundations, deep foundations, earth retaining structures, rock mechanics and tunnelling. In this book, the author's done all the heavy number-crunching for you, so you get instant, ready-to-apply data on activities such as: hard ground tunnelling, soft ground tunnelling, reinforced earth retaining walls, geotechnical aspects of wetland mitigation and geotechnical aspects of landfill design. - Easy-to-understand approach the formulas and calculations- Covers calculations for foundation,earthworks and/or pavement subgrades- Provides common codes for working with computer software- All calculations are provided in both US and SI units

Front Cover 1
Geotechnical Engineering Calculations and Rules of Thumb 4
Copyright 5
Table of Contents 6
Part 1: Geotechnical Engineering Fundamentals 18
Chapter 1. Site Investigation and Soil Conditions 20
1.1 Introduction 20
1.1.1 Cohesion 20
1.1.2 Friction 20
1.2 Origin of a Project 21
1.3 Geotechnical Investigation Procedure 22
1.4 Literature Survey 22
1.4.1 Adjacent Property Owners 23
1.4.2 Aerial Surveys 23
1.5 Field Visit 25
1.5.1 Hand Auguring 26
1.5.2 Sloping Ground 26
1.5.3 Nearby Structures 26
1.5.4 Contaminated Soils 27
1.5.5 Underground Utilities 27
1.5.6 Overhead Power Lines 28
1.5.7 Man-Made Fill Areas 29
1.5.8 Field Visit Checklist 29
1.6 Subsurface Investigation Phase 29
1.6.1 Soil Strata Identification 31
1.7 Geotechnical Field Tests 35
1.7.1 SPT(N) Value 35
1.7.2 Pocket Penetrometer 36
1.7.3 Vane Shear Test 37
1.8 Correlation Between Friction Angle (f) and SPT (N) Value 38
1.8.1 Hatakanda and Uchida Equation 38
1.8.2 SPT (N) Value vs. Total Density 40
1.9 SPT (N) Value Computation Based on Drill Rig Efficiency 40
1.10 SPT-CPT Correlations 42
1.11 Groundwater 43
1.11.1 Dewatering 43
1.11.2 Landfill Construction 43
1.11.3 Seismic Analysis 44
1.11.4 Monitoring Wells 44
1.11.5 Aquifers with Artesian Pressure 44
1.12 Laboratory Testing 46
1.12.1 Sieve Analysis 46
1.12.2 Hydrometer 51
1.12.3 Liquid Limit and Plastic Limit (Atterberg Limit) 54
1.12.4 Permeability Test 56
1.12.5 Unconfined Undrained Compressive Strength Tests (UU Tests) 60
1.12.6 Tensile Failure 61
References 62
Chapter 2. Geotechnical Engineering Theoretical Concepts 64
2.1 Vertical Effective Stress 64
2.2 Lateral Earth Pressure 67
2.3 Stress Increase Due to Footings 69
2.4 Overconsolidation Ratio (OCR) 71
2.4.1 Overconsolidation Due to Glaciers 72
2.4.2 Overconsolidation Due to Groundwater Lowering 75
2.5 Soil Compaction 77
2.5.1 Modified Proctor Test Procedure 78
2.5.2 Controlled Fill Applications 80
2.6 Borrow Pit Computations 81
2.6.1 Procedure 81
2.6.2 Summary of Steps for Borrow Pit Problems 84
Part 2: Shallow Foundations 86
Chapter 3. Shallow Foundation Fundamentals 88
3.1 Introduction 88
3.2 Buildings 88
3.2.1 Buildings with Basements 88
3.3 Bridges 89
3.4 Frost Depth 92
Chapter 4. Bearing Capacity: Rules of Thumb 94
4.1 Introduction 94
4.2 Bearing Capacity in Medium to Coarse Sands 94
4.3 Bearing Capacity in Fine Sands 96
Chapter 5. Bearing Capacity Computation 98
5.1 Terms Used in the Terzaghi Bearing Capacity Equation 99
5.2 Description of Terms in the Terzaghi Bearing Capacity Equation 99
5.2.1 Cohesion Term 99
5.2.2 Surcharge Term 100
5.2.3 Density Term 101
5.3 Discussion of the Terzaghi Bearing Capacity Equation 102
5.3.1 Effect of Density 103
5.3.2 Effect of Friction Angle f 103
5.4 Bearing Capacity in Sandy Soil 104
5.5 Bearing Capacity in Clay 107
5.6 Bearing Capacity in Layered Soil 111
5.7 Bearing Capacity when Groundwater Present 122
5.8 Groundwater Below the Stress Triangle 124
5.9 Groundwater Above the Bottom of Footing Level 124
5.10 Groundwater at Bottom of Footing Level 125
5.11 Shallow Foundations in Bridge Abutments 130
Chapter 6. Elastic Settlement of Shallow Foundations 134
6.1 Introduction 134
Reference 137
Chapter 7. Foundation Reinforcement Design 138
7.1 Concrete Design (Refresher) 138
7.1.1 Load Factors 138
7.1.2 Strength Reduction Factors (f) 138
7.1.3 How Do We Find the Shear Strength? 139
7.2 Design for Beam Flexure 139
7.3 Foundation Reinforcement Design 141
7.3.1 Design for Punching Shear 141
7.3.2 Punching Shear Zone 142
7.3.3 Design Reinforcements for Bending Moment 144
Chapter 8. Grillage Design 148
8.1 Introduction 148
8.1.1 What Is a Grillage? 148
Chapter 9. Footings Subjected to Bending Moment 156
9.1 Introduction 156
9.2 Representation of Bending Moment with an Eccentric Load 158
Chapter 10. Geogrids 162
10.1 Failure Mechanisms 163
Reference 164
Chapter 11. Tie Beams and Grade Beams 166
11.1 Tie Beams 166
11.2 Grade Beams 166
11.3 Construction Joints 167
Chapter 12. Drainage for Shallow Foundations 170
12.1 Introduction 170
12.1.1 Well Points 171
12.1.2 Small Scale Dewatering for Column Footings 171
12.1.3 Medium Scale Dewatering for Basements or Deep Excavations 171
12.1.4 Large Scale Dewatering for Basements or Deep Excavations 172
12.1.5 Design of Dewatering Systems 173
12.2 Ground Freezing 175
12.2.1 Ground Freezing Technique 175
12.2.2 Ground Freezing—Practical Aspects 177
12.3 Drain Pipes and Filter Design 181
12.3.1 Design of Gravel Filters 182
12.4 Geotextile Filter Design 183
12.4.1 Geotextile Wrapped Granular Drains (Sandy Surrounding Soils) 183
12.4.2 Geotextile Wrapped Granular Drains (Clayey Surrounding Soils) 186
12.4.3 Geotextile Wrapped Pipe Drains 186
12.5 Summary 187
References 187
Chapter 13. Selection of Foundation Type 188
13.1 Shallow Foundations 188
13.2 Mat Foundations 189
13.3 Pile Foundations 189
13.4 Caissons 190
13.5 Foundation Selection Criteria 190
Chapter 14. Consolidation 194
14.1 Introduction 194
14.1.1 Secondary Compression 195
14.1.2 Summary of Concepts Learned 196
14.2 Excess Pore Pressure Distribution 197
14.3 Normally Consolidated Clays and Overconsolidated Clays 198
14.4 Total Primary Consolidation 203
14.5 Consolidation in Overconsolidated Clay 208
14.6 Computation of Time for Consolidation 213
14.6.1 Drainage Layer (H) 213
Part 3: Earth Retaining Structures 220
Chapter 15. Earth Retaining Structures 222
15.1 Introduction 222
15.2 Water Pressure Distribution 223
15.2.1 Computation of Horizontal Pressure in Soil 225
15.3 Active Earth Pressure Coefficient, Ka 226
15.4 Earth Pressure Coefficient at Rest, K0 227
15.5 Gravity Retaining Walls: Sand Backfill 227
15.5.1 Resistance Against Sliding Failure 228
15.5.2 Resistance Against Overturning 229
15.6 Retaining Wall Design When Groundwater Is Present 232
15.7 Retaining Wall Design in Nonhomogeneous Sands 238
15.7.1 General Equation for Gravity Retaining Walls 243
15.7.2 Lateral Earth Pressure Coefficient for Clayey Soils (Active Condition) 245
15.7.3 Lateral Earth Pressure Coefficient for Clayey Soils (Passive Condition) 251
15.7.4 Earth Pressure Coefficients for Cohesive Backfills 257
15.7.5 Drainage Using Geotextiles 257
15.7.6 Consolidation of Clayey Soils 258
Chapter 16. Gabion Walls 260
16.1 Introduction 260
16.2 Log Retaining Walls 265
16.2.1 Construction Procedure of Log Walls 266
Chapter 17. Reinforced Earth Walls 268
17.1 Introduction 268
17.2 Equations to Compute the Horizontal Force on the Facing Unit, H 268
17.3 Equations to Compute the Metal-Soil Friction, P 268
Part 4: Geotechnical Engineering Strategies 274
Chapter 18. Geotechnical Engineering Software 276
18.1 Shallow Foundations 276
18.1.1 SPT Foundation 276
18.1.2 ABC Bearing Capacity Computation 276
18.1.3 Settle 3D 277
18.1.4 Vdrain—Consolidation Settlement 277
18.1.5 Embank 277
18.2 Slope Stability Analysis 277
18.2.1 Reinforced Soil Slopes (RSS) 277
18.2.2 Mechanically Stabilized Earth Walls (MSEW) 278
18.3 Bridge Foundations 278
18.3.1 FB Multipier 278
18.4 Rock Mechanics 278
18.4.1 Wedge Failure Analysis 278
18.4.2 Rock Mass Strength Parameters 279
18.5 Pile Design 279
18.5.1 Spile 279
18.5.2 Kalny 279
18.6 Lateral Loading Analysis—Computer Software 280
18.6.1 Lateral Loading Analysis Using Computer Programs 280
18.6.2 Soil Parameters for Sandy Soils 281
18.6.3 Soil Parameters for Clayey Soils 281
18.7 Finite Element Method 282
18.7.1 Representation of Time History 283
18.7.2 Groundwater Changes 283
18.7.3 Disadvantages 284
18.7.4 Finite Element Computer Programs 284
18.8 Boundary Element Method 284
References 285
Chapter 19. Geotechnical Instrumentation 286
19.1 Inclinometer 286
19.1.1 Procedure 287
19.2 Tiltmeter 288
19.2.1 Procedure 288
Chapter 20. Unbraced Excavations 290
20.1 Introduction 290
20.1.1 Unbraced Excavations in Sandy Soils (Heights Less than 15 ft) 290
20.1.2 Unbraced Excavations in Cohesive Soils (Heights Less than 15 ft) 291
Reference 292
Chapter 21. Raft Design 294
21.1 Introduction 294
21.2 Raft Design in Sandy Soils 294
Reference 296
Chapter 22. Rock Mechanics and Foundation Design in Rock 298
22.1 Introduction 298
22.2 Brief Overview of Rocks 298
22.3 Rock Joints 301
22.3.1 Joint Set 301
22.3.2 Foundations on Rock 302
22.4 Rock Coring and Logging 303
22.4.1 Rock Quality Designation (RQD) 305
22.4.2 Joint Filler Materials 305
22.4.3 Core Loss Information 306
22.4.4 Fractured Zones 306
22.4.5 Drill Water Return Information 306
22.4.6 Water Color 307
22.4.7 Rock Joint Parameters 307
22.4.8 Joint Types 307
22.5 Rock Mass Classification 308
22.6 Q system 309
22.6.1 Rock Quality Designation (RQD) 309
22.6.2 Joint Set Number, Jn 310
22.6.3 Joint Roughness Number, Jr 310
22.6.4 Joint Alteration Number, Ja 312
22.6.5 Joint Water Reduction Factor, Jw 313
22.6.6 Defining the Stress Reduction Factor (SRF) 313
22.6.7 Obtaining the Stress Reduction Factor (SRF) 313
References 315
Chapter 23. Dip Angle and Strike 316
23.1 Introduction 316
23.1.1 Dip Direction 317
23.2 Oriented Rock Coring 317
23.2.1 Oriented Coring Procedure 317
23.2.2 Oriented Coring Procedure (Summary) 318
23.3 Oriented Core Data 318
Chapter 24. Rock Bolts, Dowels, and Cable Bolts 320
24.1 Introduction 320
24.1.1 Applications 320
24.2 Mechanical Rock Anchors 321
24.2.1 Mechanical Anchor Failure 322
24.2.2 Design of Mechanical Anchors 322
24.2.3 Grouting Methodology for Mechanical Rock Anchors 325
24.2.4 Tube Method 326
24.2.5 Hollow Rock Bolts 326
24.3 Resin Anchored Rock Bolts 327
24.3.1 Disadvantages 328
24.3.2 Advantages 328
24.4 Rock Dowels 328
24.4.1 Cement Grouted Dowels 328
24.4.2 Split Set Stabilizers 328
24.4.3 Advantages and Disadvantages 329
24.4.4 Swellex Dowels 329
24.5 Grouted Rock Anchors 330
24.5.1 Failure Triangle for Grouted Rock Anchors 330
24.6 Prestressed Grouted Rock Anchors 331
24.6.1 Advantages of Prestressed Anchors 333
24.6.2 Anchor-Grout Bond Load in Nonstressed Anchors 333
24.6.3 Anchor-Grout Bond Load in Prestressed Anchors 333
References 337
Chapter 25. Soil Anchors 338
25.1 Mechanical Soil Anchors 338
25.2 Grouted Soil Anchors 339
Chapter 26. Tunnel Design 344
26.1 Introduction 344
26.2 Roadheaders 344
26.3 Drill and Blast 345
26.4 Tunnel Design Fundamentals 346
26.4.1 Literature Survey 348
26.4.2 Subsurface Investigation Program for Tunnels 348
26.4.3 Laboratory Test Program 350
26.4.4 Unconfined Compressive Strength Test 350
26.4.5 Mineral Identification 351
26.4.6 Petrographic Analysis 352
26.4.7 Tri-Axial Tests 353
26.4.8 Tensile Strength Test 353
26.4.9 Hardness Tests 354
26.4.10 Consolidation Tests 354
26.4.11 Swell Tests 354
26.5 Tunnel Support Systems 354
26.5.1 Shotcrete 355
26.5.2 Dry Mix Shotcrete 356
26.6 Wedge Analysis 357
References 358
Chapter 27. Short Course on Seismology 360
27.1 Introduction 360
27.1.1 Faults 361
27.1.2 Horizontal Fault 361
27.1.3 Vertical Fault (Strike Slip Faults) 361
27.1.4 Active Fault 362
27.2 Richter Magnitude Scale (M) 362
27.2.1 Peak Ground Acceleration 363
27.2.2 Seismic Waves 363
27.2.3 Seismic Wave Velocities 364
27.3 Liquefaction 364
27.3.1 Impact Due to Earthquakes 365
27.3.2 Earthquake Properties 366
27.3.3 Soil Properties 366
27.3.4 Soil Resistance to Liquefaction 367
27.3.5 Correction Factor for Magnitude 370
27.3.6 Correction Factor for Content of Fines 372
References 375
Chapter 28. Geosynthetics in Geotechnical Engineering 376
28.1 Geotextiles 376
28.2 Geomembranes 377
28.3 Geosynthetic Clay Liners (GCLs) 377
28.4 Geogrids, Geonets, and Geocomposites 378
Chapter 29. Slurry Cutoff Walls 380
29.1 Slurry Cutoff Wall Types 380
29.2 Soil-Bentonite Walls (SB Walls) 381
29.3 Cement-Bentonite Walls (CB Walls) 381
29.4 Trench Stability for Slurry Cutoff Walls in Sandy Soils 382
Part 5. Pile Foundations 386
Chapter 30. Pile Foundations 388
30.1 Introduction 388
30.2 Pile Types 388
30.2.1 Displacement Piles 389
30.2.2 Nondisplacement Piles 390
30.3 Timber Piles 390
30.3.1 Timber Pile Decay: Biological Agents 391
30.3.2 Preservation of Timber Piles 393
30.3.3 Shotcrete Encasement of Timber Piles 393
30.3.4 Timber Pile Installation 394
30.3.5 Splicing of Timber Piles 394
30.4 Steel H-Piles 395
30.4.1 Guidelines for Splicing (International Building Code) 396
30.5 Pipe Piles 396
30.5.1 Closed End Pipe Piles 397
30.5.2 Open End Pipe Piles 397
30.5.3 Splicing of Pipe Piles 398
30.6 Precast Concrete Piles 400
30.7 Reinforced Concrete Piles 400
30.8 Prestressed Concrete Piles 400
30.8.1 Reinforcements for Precast Concrete Piles 401
30.8.2 Concrete Strength (IBC) 401
30.8.3 Hollow Tubular Section Concrete Piles 401
30.9 Driven Cast-in-Place Concrete Piles 402
30.10 Selection of Pile Type 402
Chapter 31. Pile Design in Sandy Soils 406
31.1 Description of Terms 407
31.1.1 Effective Stress, s' 407
31.1.2 Bearing Capacity Factor, Nq 408
31.1.3 Lateral Earth Pressure Coefficient, K 408
31.1.4 In Situ Soil Condition, K0 408
31.1.5 Active Condition, Ka 408
31.1.6 Passive Condition, Kp 408
31.1.7 Soil Near Piles, K 409
31.1.8 Wall Friction Angle, Tan d 409
31.1.9 Perimeter Surface Area of Piles, Ap 409
31.2 Equations for End Bearing Capacity in Sandy Soils 410
31.2.1 API Method 410
31.2.2 Martin et al. (1987) 410
31.2.3 NAVFAC DM 7.2 (1984) 411
31.2.4 Bearing Capacity Factor, Nq 411
31.2.5 Kulhawy (1984) 412
31.3 Equations for Skin Friction in Sandy Soils 413
31.3.1 McClelland (1974): Driven Piles 413
31.3.2 Meyerhoff (1976): Driven Piles 414
31.3.3 Meyerhoff (1976): Bored Piles 414
31.3.4 Kraft and Lyons (1974) 415
31.3.5 NAVFAC DM 7.2 (1984) 415
31.3.6 Pile Skin Friction Angle, d 415
31.3.7 Lateral Earth Pressure Coefficient, K 415
31.3.8 Average K Method 416
31.3.9 Pile Design Using Meyerhoff Equation: Correlation with SPT (N) 428
31.3.10 Modified Meyerhoff Equation 429
31.3.11 Meyerhoff Equations for Skin Friction 431
31.4 Critical Depth for Skin Friction (Sandy Soils) 432
31.4.1 Experimental Evidence for Critical Depth 433
31.4.2 Reasons for Limiting Skin Friction 434
31.5 Critical Depth for End Bearing Capacity (Sandy Soils) 435
31.5.1 Critical Depth 436
References 440
Chapter 32. Pile Design in Clay Soils 442
32.1 Introduction 442
32.1.1 Skin Friction 443
32.2 End Bearing Capacity in Clay Soils, Different Methods 445
32.2.1 Driven Piles 445
32.2.2 Bored Piles 445
32.3 Skin Friction in Clay Soils (Different Methods) 446
32.3.1 Driven Piles 446
32.3.2 Bored Piles 448
32.3.3 Equation Based on Both Cohesion and Effective Stress 449
32.4 Piles in Clay Soils 451
32.4.1 Skin Friction in Clay Soils 451
32.4.2 Computation of Skin Friction in Bored Piles 451
32.5 Case Study: Foundation Design Options 457
32.5.1 General Soil Conditions 457
32.5.2 Foundation Option 1: Shallow Footing Placed on Compacted Backfill 458
32.5.3 Foundation Option 2: Timber Piles Ending on Sand and Gravel Layer 458
32.5.4 Foundation Option 3: Timber Piles Ending in Boston Blue Clay Layer 459
32.5.5 Foundation Option 4: Belled Piers Ending in Sand and Gravel 459
32.5.6 Foundation Option 5: Deep Piles Ending in Till or Shale 460
32.5.7 Foundation Option 6: Floating Foundations Placed on Sand and Gravel (Rafts) 462
References 463
Chapter 33. Design of Pin Piles: Semi-Empirical Approach 466
33.1 Theory 466
33.1.1 Concepts to Consider 467
33.2 Design of Pin Piles in Sandy Soils 469
References 471
Chapter 34. Neutral Plane Concept and Negative Skin Friction 472
34.1 Introduction 472
34.1.1 Soil and Pile Movement Above the Neutral Plane 473
34.1.2 Soil and Pile Movement Below the Neutral Plane 473
34.1.3 Soil and Pile Movement at the Neutral Plane 473
34.1.4 Location of the Neutral Plane 474
34.2 Negative Skin Friction 474
34.2.1 Causes of Negative Skin Friction 474
34.2.2 Summary 475
34.3 Bitumen Coated Pile Installation 475
34.3.1 How Bitumen Coating Works Against Down Drag 475
Chapter 35. Design of Caissons 478
35.1 Introduction 478
35.2 Brief History of Caissons 478
35.2.1 Machine Digging 479
35.3 Caisson Design in Clay Soil 479
35.3.1 Different Methods 479
35.3.2 Factor of Safety 481
35.3.3 Weight of the Caisson 482
35.3.4 AASHTO Method 483
35.4 Meyerhoff Equation for Caissons 489
35.4.1 End Bearing Capacity 489
35.4.2 Modified Meyerhoff Equation 490
35.4.3 Meyerhoff Equation for Skin Friction 492
35.4.4 AASHTO Method for Calculating End Bearing Capacity 493
35.5 Belled Caisson Design 494
35.6 Caisson Design in Rock 501
35.6.1 Caissons Under Compression 501
35.6.2 Simplified Design Procedure 501
References 508
Chapter 36. Design of Pile Groups 510
36.1 Introduction 510
36.2 Soil Disturbance During Driving 511
36.3 Soil Compaction in Sandy Soil 511
36.3.1 Pile Bending 512
36.3.2 End Bearing Piles 512
36.3.3 AASHTO (1992) Guidelines 513
Reference 515
Appendix: Conversions* 516
Index 518

Erscheint lt. Verlag 8.4.2011
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Technik Bauwesen
ISBN-10 0-08-055903-4 / 0080559034
ISBN-13 978-0-08-055903-2 / 9780080559032
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Trigonometrie, Analytische Geometrie, Algebra, Wahrscheinlichkeit

von Walter Strampp

eBook Download (2024)
De Gruyter (Verlag)
CHF 92,75
Angewandte Analysis im Bachelorstudium

von Michael Knorrenschild

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
CHF 34,15

von Siegfried Völkel; Horst Bach; Jürgen Schäfer …

eBook Download (2024)
Carl Hanser Verlag GmbH & Co. KG
CHF 34,15