Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Topics in Operator Semigroups (eBook)

eBook Download: PDF
2009 | 2010
XIV, 266 Seiten
Birkhäuser Boston (Verlag)
978-0-8176-4932-6 (ISBN)

Lese- und Medienproben

Topics in Operator Semigroups - Shmuel Kantorovitz
Systemvoraussetzungen
117,69 inkl. MwSt
(CHF 114,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This monograph is concerned with the interplay between the theory of operator semigroups and spectral theory. The basics on operator semigroups are concisely covered in this self-contained text. Part I deals with the Hille--Yosida and Lumer--Phillips characterizations of semigroup generators, the Trotter--Kato approximation theorem, Kato's unified treatment of the exponential formula and the Trotter product formula, the Hille--Phillips perturbation theorem, and Stone's representation of unitary semigroups. Part II explores generalizations of spectral theory's connection to operator semigroups.


This book is based on lecture notes from a second-year graduate course, and is a greatly expanded version of our previous monograph [K8]. We expose some aspects of the theory of semigroups of linear operators, mostly (but not only) from the point of view of its meeting with that part of spectral theory which is concerned with the integral representation of families of operators. This approach and selection of topics di?erentiate this book from others in the general area, and re?ect the author's own research directions. There is no attempt therefore to cover thoroughly the theory of semigroups of operators. This theory and its applications are extensively exposed in many books, from theclassicHille-Phillipsmonograph[HP]tothemostrecenttextbookofEngel and Nagel [EN2] (see [A], [BB], [Cl], [D3], [EN1], [EN2], [Fat], [G], [HP], [P], [Vr], and others), as well as in chapters in more general texts on Functional Analysis and the theory of linear operators (cf. [D5], [DS I-III], [Kat1], [RS], [Y], and many others).

Contents 7
Preface 10
General Theory 13
A Basic Theory 14
A.1 Overview 14
A.2 The Generator 16
A.3 Type and Spectrum 20
A.4 Uniform Continuity 21
A.5 Core for the Generator 22
A.6 The Resolvent 24
A.7 Pseudo-Resolvents 26
A.8 The Laplace Transform 28
A.9 Abstract Potentials 29
A.10 The Hille–Yosida Theorem 31
A.11 The Hille–Yosida Space 33
A.12 Dissipative Operators 36
A.13 The Trotter–Kato Convergence Theorem 39
A.14 Exponential Formulas 43
A.15 Perturbation of Generators 47
A.16 Groups of Operators 53
A.17 Bounded Groups of Operators 54
A.18 Stone’s Theorem 55
A.19 Bochner’s Theorem 58
B The Semi-Simplicity Space for Groups 60
B.1 The Bochner Norm 60
B.2 The Semi-Simplicity Space 64
B.3 Scalar-Type Spectral Operators 70
C Analyticity 73
C.1 Analytic Semigroups 73
C.2 The Generator of an Analytic Semigroup 75
D The Semigroup as a Function of its Generator 80
D.1 Noncommutative Taylor Formula 80
D.2 Analytic Families of Semigroups 88
E Large Parameter 96
E.1 Analytic Semigroups 96
E.2 Resolvent Iterates 99
E.3 Mean Stability 103
E.4 The Asymptotic Space 112
E.5 Semigroups of Isometries 116
E.6 The ABLV Stability Theorem 118
F Boundary Values 122
F.1 Regular Semigroups and Boundary Values 122
F.2 The Generator of a Regular Semigroup 127
F.3 Examples of Regular Semigroups 130
G Pre-Semigroups 140
G.1 The Abstract Cauchy Problem 141
G.2 The Exponentially Tamed Case 145
Integral Representations 148
A The Semi-Simplicity Space 149
A.1 The Real Spectrum Case 149
A.2 The Case R+ .(-A) 162
B The Laplace–Stieltjes Space 169
B.1 The Laplace–Stieltjes Space 169
B.2 Semigroups of Closed Operators 174
B.3 The Integrated Laplace Space 177
B.4 Integrated Semigroups 181
C Families of Unbounded Symmetric Operators 184
C.1 Local Symmetric Semigroups 184
C.2 Nelson’s Analytic Vectors Theorem 188
C.3 Local Bounded Below Cosine Families 190
C.4 Local Symmetric Cosine Families 194
A Taste of Applications 198
Prelude 199
A Analytic Families of Evolution Systems 200
A.1 Coefficients Analyticity and Solutions Analyticity 200
A.2 Kato’s Conditions 201
A.3 Tanabe’s Conditions 203
B Similarity 207
B.1 Overview 207
B.2 Similarity Within the Family S + V 207
B.3 Similarity of Certain Perturbations 221
Miscellaneous Exercises 223
Abstract Landau Inequality 223
Variation on the Theme of Dissipativity 223
Resolvents of the Hille–Yosida Approximations 224
Adjoint Semigroup 224
Spectra of a Semigroup and its Generator 225
Compact Semigroups 226
Powers of the Generator 227
C8-semigroups 228
Entire Vectors 228
Nonhomogeneous ACP 228
The Graph Norm on D(A) 229
Commutativity 229
Square of the Generator 229
Resolvents of Bounded Analytic Semigroups 230
A-boundedness 230
Unitary Vectors 231
Markov Semigroups 231
Translation Semigroup 232
The MacLaurin Formula for Semigroups 233
Restriction of Semigroup to Invariant Subspaces 233
Semigroups Arising from ACP 234
Bounded Below Semigroups 235
Natural Operational Calculus for Groups 235
Construction of Analytic Semigroups 236
Approximation of Co- semigroups by Uniformly Continuous Semigroups 237
Stability in the u.o.t 238
Semigroups on Hilbert Space 239
Stability in the u.o.t. on Hilbert Space 239
Hille–Yosida Space, Semi-Simplicity Space, etc. 241
Approximation Formula for the Integrated Semigroup 245
Semigroup Induced on Quotient Space 246
Semigroup Induced on l8(X) 246
Semigroup Induced on a Tensor Space 247
Infinite Product of Semigroups 247
Perturbation of Generator by B B([D(A)]) 248
Intertwining and Spectrum 249
Mining Lemma 2.16 250
The Eberlein and Schoenberg Criteria for Fourier– Stieltjes Transforms 251
Notes and References 253
Part I. General Theory 253
A. Basic Theory 253
B. The Semi-simplicity Space for Groups 254
C. Analyticity 254
D. The Semigroup as a Function of its Generator 254
E. Large Parameter 254
F. Boundary Values 254
G. Pre-Semigroups 254
Part II. Integral Representations 255
A. The Semi-Simplicity Space 255
B. The Laplace–Stieltjes Space 255
C. Families of Unbounded Symmetric Operators 255
Part III. A Taste of Applications 255
A. Dependence on Parameters 255
B. Similarity (etc.) 256
Bibliography 257
Index 266

Erscheint lt. Verlag 22.10.2009
Reihe/Serie Progress in Mathematics
Progress in Mathematics
Zusatzinfo XIV, 266 p.
Verlagsort Boston
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Statistik
Technik
Schlagworte Functional Analysis • Nussbaum’s theorem • operator semigroups • spectral theory • Stone’s representation • Trotter--Kato approximation theorem • Trotter product formula • unitary semigroups
ISBN-10 0-8176-4932-8 / 0817649328
ISBN-13 978-0-8176-4932-6 / 9780817649326
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich