Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Six Lectures on Commutative Algebra. Modern Birkhäuser Classics -  J. Elias,  J. M. Giral,  Rosa M. Miró-Roig

Six Lectures on Commutative Algebra. Modern Birkhäuser Classics (eBook)

eBook Download: PDF
2009 | 1. Auflage
XI, 409 Seiten
Birkhäuser Basel (Verlag)
978-3-0346-0329-4 (ISBN)
Systemvoraussetzungen
42,75 inkl. MwSt
(CHF 41,75)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Interest in commutative algebra has surged over the past decades. In order to survey and highlight recent developments in this rapidly expanding field, the Centre de Recerca Matematica in Bellaterra organized a ten-days Summer School on Commutative Algebra in 1996. Lectures were presented by six high-level specialists, L. Avramov (Purdue), M.K. Green (UCLA), C. Huneke (Purdue), P. Schenzel (Halle), G. Valla (Genova) and W.V. Vasconcelos (Rutgers), providing a fresh and extensive account of the results, techniques and problems of some of the most active areas of research. The present volume is a synthesis of the lectures given by these authors. Research workers as well as graduate students in commutative algebra and nearby areas will find a useful overview of the field and recent developments in it. Reviews "All six articles are at a very high level, they provide a thorough survey of results and methods in their subject areas, illustrated with algebraic or geometric examples." - Acta Scientiarum Mathematicarum Avramov lecture: "... it contains all the major results [on infinite free resolutions], it explains carefully all the different techniques that apply, it provides complete proofs (...). This will be extremely helpful for the novice as well as the experienced." - Mathematical reviews Huneke lecture: "The topic is tight closure, a theory developed by M. Hochster and the author which has in a short time proved to be a useful and powerful tool. (...) The paper is extremely well organized, written, and motivated." - Zentralblatt MATH Schenzel lecture: "... this paper is an excellent introduction to applications of local cohomology." - Zentralblatt MATH Valla lecture: "... since he is an acknowledged expert on Hilbert functions and since his interest has been so broad, he has done a superb job in giving the readers a lively picture of the theory." - Mathematical reviews Vasconcelos lecture: "This is a very useful survey on invariants of modules over noetherian rings, relations between them, and how to compute them." - Zentralblatt MATH TOC:Preface.- Infinite Free Resolutions.- Generic Initial Ideals.- Tight Closure, Parameter Ideals, and Geometry.- On the Use of Local Cohomology in Algebra and Geometry.- Problems and Results on Hilbert Functions of Graded Algebras.- Cohomological Degrees of Graded Modules.

Table of Contents 6
Preface 11
Infinite Free Resolutions 12
Introduction 12
1. Complexes 15
1.1. Basic constructions 15
1.2. Syzygies 18
1.3. Differential graded algebra 21
2. Multiplicative Structures on Resolutions 25
2.1. DG algebra resolutions 25
2.2. DG module resolutions 29
2.3. Products versus minimality 32
3. Change of Rings 35
4. Growth of Resolutions 45
4.1. Regular presentations 45
4.2. Complexity and curvature 49
4.3. Growth problems 52
5. Modules over Golod Rings 55
5.1. Hypersurfaces 55
5.2. Golod rings 57
5.3. Golod modules 61
6. Tate Resolutions 64
6.1. Construction 65
6.2. Derivations 69
6.3. Acyclic closures 72
7. Deviations of a Local Ring 75
7.1. Deviations and Betti numbers 76
7.2. Minimal models 77
7.3. Complete intersections 82
7.4. Localization 83
8. Test Modules 86
8.1. Residue field 86
8.2. Residue domains 88
8.3. Conormal modules 94
9. Modules over Complete Intersections 98
9.1. Cohomology operators 98
9.2. Betti numbers 103
9.3. Complexity and Tor 106
10. Homotopy Lie Algebra of a Local Ring 110
10.1. Products in cohomology 111
10.2. Homotopy Lie algebra 114
10.3. Applications 117
References 121
Generic Initial Ideals 130
Introduction 130
1. The Initial Ideal 131
2. Regularity and Saturation 148
3. The Macaulay-Gotzmann Estimates on the Growth of Ideals 158
4. Points in P2 and Curves in P3 168
5. Gins in the Exterior Algebra 183
6. Lexicographic Gins and Partial Elimination Ideals 188
References 196
Tight Closure, Parameter Ideals,and Geometry 198
Foreword 198
1. An Introduction to Tight Closure 198
2. How Does Tight Closure Arise? 204
3. The Test Ideal I 211
4. The Test Ideal II: the Gorenstein Case 216
5. The Tight Closure of Parameter Ideals 221
6. The Strong Vanishing Theorem 226
7. Plus Closure 230
8. F-Rational Rings 233
9. Rational Singularities 236
10. The Kodaira Vanishing Theorem 239
References 242
On the Use of Local Cohomology in Algebra and Geometry 252
Introduction 252
1. A Guide to Duality 254
1.1. Local Duality. 254
1.2. Dualizing Complexes and Some Vanishing Theorems. 260
1.3. Cohomological Annihilators. 267
2. A Few Applications of Local Cohomology 270
2.1. On Ideal Topologies. 270
2.2. On Ideal Transforms. 274
2.3. Asymptotic Prime Divisors. 276
2.4. The Lichtenbaum-Hartshorne Vanishing Theorem. 283
2.5. Connectedness Results. 284
3. Local Cohomology and Syzygies 287
3.1. Local Cohomology and Tor’s. 287
3.2. Estimates of Betti Numbers. 292
3.3. Castelnuovo-Mumford Regularity. 293
3.4. The Local Green Modules. 297
References 301
Problems and Results on Hilbert Functions of Graded Algebras 304
Introduction 304
1. Macaulay’s Theorem 307
2. The Perfect Codimension Two and Gorenstein Codimension Three Case 312
3. The EGH Conjecture 322
4. Hilbert Function of Generic Algebras 328
5. Fat Points: Waring’s Problem and Symplectic Packing 330
6. The HF of a CM Local Ring 340
References 352
Cohomological Degrees of Graded Modules 356
Introduction 356
1. Arithmetic Degree of a Module 360
Multiplicity 360
Castelnuovo–Mumford regularity 361
Arithmetic degree of a module 362
Stanley–Reisner rings 363
Computation of the arithmetic degree of a module 364
Degrees and hyperplane sections 365
Arithmetic degree and hyperplane sections 365
2. Reduction Number of an Algebra 368
Castelnuovo–Mumford regularity and reduction number 368
Hilbert function and the reduction number of an algebra 369
The relation type of an algebra 370
Cayley–Hamilton theorem 371
The arithmetic degree of an algebra versus its reduction number 372
Reduction equations from integrality equations 374
3. Cohomological Degree of a Module 375
Big degs 375
Dimension one 376
Homological degree of a module 376
Dimension two 377
Hyperplane section 378
Generalized Cohen–Macaulay modules 381
Homologically associated primes of a module 382
Homological degree and hyperplane sections 383
Homological multiplicity of a local ring 387
4. Regularity versus Cohomological Degrees 388
Castelnuovo regularity 389
5. Cohomological Degrees and Numbers of Generators 391
6. Hilbert Functions of Local Rings 392
Bounding rules 393
Maximal Hilbert functions 394
Gorenstein ideals 396
General local rings 396
Bounding reduction numbers 397
Primary ideals 398
Depth conditions 399
7. Open Questions 400
Bounds problems 400
Cohomological degrees problems 401
References 401
Index 404

Erscheint lt. Verlag 1.1.2009
Sprache englisch
Original-Titel 978-3-7643-5951-5 (PM 166)
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Statistik
Technik
Schlagworte Algebra • Algebraic Geometry • Cohomology theory • Commutative algebra • Finite • Function • Generic initial ideals • Geometry • Graded algebra • Graded modules • Hilbert functions • Infinite free resolutions • Invariant • local rings • Parameter ideals • Proof • Tight closure
ISBN-10 3-0346-0329-0 / 3034603290
ISBN-13 978-3-0346-0329-4 / 9783034603294
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich