Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Image Fusion (eBook)

Theories, Techniques and Applications

(Autor)

eBook Download: PDF
2010 | 2010
XVI, 247 Seiten
Springer Berlin (Verlag)
978-3-642-11216-4 (ISBN)

Lese- und Medienproben

Image Fusion - H.B. Mitchell
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The purpose of this book is to provide a practical introduction to the th- ries, techniques and applications of image fusion. The present work has been designed as a textbook for a one-semester ?nal-year undergraduate, or ?r- year graduate, course in image fusion. It should also be useful to practising engineers who wish to learn the concepts of image fusion and apply them to practical applications. In addition, the book may also be used as a supp- mentary text for a graduate course on topics in advanced image processing. The book complements the author's previous work on multi-sensor data [1] fusion by concentrating exclusively on the theories, techniques and app- cations of image fusion. The book is intended to be self-contained in so far as the subject of image fusion is concerned, although some prior exposure to the ?eld of computer vision and image processing may be helpful to the reader. Apart from two preliminary chapters, the book is divided into three parts.

Preface 6
Contents 8
Introduction 16
Synergy 16
Image Fusion Process 17
Common Representational Block 19
Image Fusion Block 19
Image Fusion Algorithms 21
Organization 22
Software 22
Further Reading 23
References 23
Image Sensors 24
Digital Camera 24
Optical System 24
Perspective Projection 25
Orthographic Projection 25
Recording Systems 25
Noise 26
Sampling 26
Quantization 27
Bayer 27
Spatial vs. Spectral Resolution 29
Spatial Resolution 29
Spectral Resolution 30
Further Reading 32
References 32
Part I Theories 33
Common Representational Format 34
Introduction 34
Geographical Information System 36
Choosing a Common Representational Format 36
Human Fusion 36
Sparseness 37
Object Recognition 38
Uncertainty 40
Textures 41
Multi-scale Representation 42
Sub-space Methods 43
Multiple Training Sets 44
Software 45
Further Reading 45
References 46
Spatial Alignment 47
Introduction 47
Pairwise Transformation 48
Thin-Plate Splines 49
Hierarchical Registration 51
Mosaic Image 53
Stitching 55
Image Similarity Measures 55
Mutual Information 56
Normalized Mutual Information 56
Calculation 57
Histogram 57
Parzen Windows 57
Iso-intensity Lines 58
Partial Volume Interpolation 59
Artifacts 60
Software 62
Further Reading 62
References 62
Semantic Equivalence 64
Introduction 64
Probabilistic Scale 65
Plat Calibration 66
Histogram Calibration 67
Isotonic Calibration 67
Decision Labels 68
Assignment Matrix 69
Co-association Matrix 71
Software 72
Further Reading 72
References 72
Radiometric Calibration 74
Introduction 74
Histogram Matching 75
Exact Histogram Specification 76
Midway Image Equalization 77
Matching Second-Order Statistics 79
Ranking 79
Thresholding 80
Segmentation 81
Feature Map Normalization 82
Probabilistic Scale 83
Software 83
Further Reading 84
References 84
Pixel Fusion 85
Introduction 85
Addition 85
Robust Averaging 87
Subtraction 87
Multiplication 90
Division 90
Feature Map Fusion 91
Decision Fusion 93
Shape-Based Averaging 95
Similarity 97
Label Permutation 97
Co-associative Matrix 98
Software 99
References 99
Part II Techniques 101
Multi-resolution Analysis 102
Introduction 102
Discrete Wavelet Transform 103
Undecimated Discrete Wavelet Transform (UDWT) 105
Wavelet Fusion 107
Expectation-Maximization Algorithm 110
Multi-modal Wavelet Fusion 110
Pan-Sharpening 113
Software 114
Further Reading 114
References 114
Image Sub-space Techniques 116
Introduction 116
Principal Component Analysis (PCA) 118
PCA Variants 121
Whitening 121
Two-Dimensional PCA 122
PCA Fusion 123
Non-negative Matrix Factorization (NMF) 124
Linear Discriminant Analysis (LDA) 125
Fisherface 126
Median LDA 127
Re-weighting LDA 127
Two-Dimensional LDA 128
Nearest Neighbor Discriminant Analysis (NNDA) 129
K-Nearest Neighbor Discriminant Analysis 130
Two-Dimensional NNDA 130
Canonical Correlation Analysis (CCA) 130
Software 131
Further Reading 131
References 131
Ensemble Learning 134
Ensemble Learning Methods 134
Diversity Measures 135
Multiple Image Transformations Ik 137
Multiple Subspace Transformations 138
Multiple Random Convolutions 138
Multiple Normalizations 139
Multiple Color Spaces 140
Multiple Thresholds 140
Multiple Segmentations 141
Re-sampling Methods 142
Image Fusion 142
Ensemble Thresholding 144
Ensemble Spatial Sampling 146
Ensemble Atlas Based Segmentation 148
Ensemble Nearest Neighbor Classification 149
Further Reading 150
Software 150
References 150
Re-sampling Methods 152
Introduction 152
Bootstrapping 152
Face Recognition with Bagging 153
Bagged Nearest Neighbor Classifier 153
Bagged K-means Clustering 154
Boosting 156
Viola-Jones Algorithm 158
Boosted Object Detection 158
Software 161
Further Reading 162
References 162
Image Thresholding 163
Global Thresholding 163
Statistical Algorithms 164
Ridler-Calvard 166
Otsu 166
Kittler-Illingworth 166
Kapur 167
Tsai 167
Local Thresholding 168
Software 168
Further Reading 168
References 169
Image Key Points 170
Scale-Invariant Feature Transform 170
Hyperspectral Images 171
Speeded-Up Robust Feature 172
Complex Wavelet Transform 172
Software 173
References 173
Image Similarity Measures 174
Introduction 174
Global Similarity Measures without Spatial Alignment 177
Probabilistic Similarity Measures 177
2 Distance Measure 179
Cross-Bin Distance Measures 181
Global Similarity Measures with Spatial Alignment 183
Mean Square Error and Mean Absolute Error 183
Cross-Correlation Coefficient 184
Mutual Information 185
Ordinal Global Similarity Measures 185
Local Similarity Measures 187
Bhat-Nayar Distance Measure 187
Mittal-Ramesh Ordinal Measure 189
Binary Image Similarity Measure 189
Hausdorff Metric 190
Software 191
Further Reading 191
References 191
Vignetting, White Balancing and Automatic Gain Control Effects 193
Introduction 193
Vignetting 194
Vignetting Correction 194
Radiometric Response Function 195
Automatic Gain Control 195
White Balancing 197
Ensemble White Balancing 198
References 198
Color Image Spaces 200
Introduction 200
Perceptual Color Models 202
IHS 202
HSV 203
HLS 204
IHLS 205
Indirect IHS Transformation 205
Circular Statistics 206
Multiple Color Spaces 207
Software 208
Further Reading 208
References 209
Markov Random Fields 210
Markov Random Fields 210
Energy Function 212
Algorithm 213
Further Reading 214
References 214
Image Quality 215
Introduction 215
Reference-Based Quality Measures 215
Non-reference Based Quality Measures 216
Analysis 218
Software 218
Further Reading 218
References 219
Part III Applications 220
Pan-sharpening 221
Introduction 221
IHS Pan-sharpening 222
Spectral Distortion 224
Pan-sharpening Algorithm of Choi 225
Pan-sharpening Algorithm of Tu et al. 226
IKONOS 226
Wavelets 227
Sensor Spectral Response 228
References 229
Ensemble Color Image Segmentation 230
Introduction 230
Image Ensemble 231
K-Means Segmentation 231
K-Means Fusion Operator 232
Reference 233
STAPLE: Simultaneous Truth and Performance Level Estimation 234
Introduction 234
Expectation-Maximization Algorithm 234
STAPLE 235
References 237
Biometric Technologies 238
Introduction 238
Multi-modal Biometrics 239
Fingerprints 239
Signatures 240
Faces 240
Iris and Retina 240
Gait Biometrics 240
Other Biometrics 240
Multi-biometrics 240
Multi-sensor System 241
Multi-algorithm System 241
Multi-instance System 242
Multi-sample System 242
Epilogue 242
References 243
Index 244

Erscheint lt. Verlag 16.3.2010
Zusatzinfo XVI, 247 p.
Verlagsort Berlin
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Grafik / Design
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Bayesian Methods • Change detection • image fusion • Image Processing • Image Registration • Image Segmentation • Knowledge • learning • markov random field • MATLAB • Pan-Sharpening • Remote Sensing • Sensor Fusion • Subspace • Super-resolution • Wavelets
ISBN-10 3-642-11216-1 / 3642112161
ISBN-13 978-3-642-11216-4 / 9783642112164
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
CHF 37,95
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
CHF 24,30