Shape Optimization under Uncertainty from a Stochastic Programming Point of View (eBook)
148 Seiten
Vieweg & Teubner (Verlag)
978-3-8348-9396-3 (ISBN)
Harald Held considers an elastic body subjected to uncertain internal and external forces. Since simply averaging the possible loadings will result in a structure that might not be robust for the individual loadings, he uses techniques from level set based shape optimization and two-stage stochastic programming. Taking advantage of the PDE's linearity, he is able to compute solutions for an arbitrary number of scenarios without significantly increasing the computational effort. The author applies a gradient method using the shape derivative and the topological gradient to minimize, e.g., the compliance and shows that the obtained solutions strongly depend on the initial guess, in particular its topology. The stochastic programming perspective also allows incorporating risk measures into the model which might be a more appropriate objective in many practical applications.
Dr. Harald Held completed his doctoral thesis at the Department of Mathematics at the University of Duisburg-Essen. He is now a Research Scientist at Siemens AG, Corporate Technology.
Dr. Harald Held completed his doctoral thesis at the Department of Mathematics at the University of Duisburg-Essen. He is now a Research Scientist at Siemens AG, Corporate Technology.
Foreword 6
Acknowledgments 7
Abstract 8
Contents 9
Symbol Index 10
1 Introduction 11
1.1 The Elasticity PDE 14
1.1.1 Variational Formulation 16
1.2 Shape Optimization Problems 23
1.3 Two-Stage Stochastic Programming 27
1.3.1 Expected Value 30
1.3.2 Risk Measures 32
2 Solution of the Elasticity PDE 35
2.1 Composite Finite Elements 38
2.1.1 Construction for the Neumann Boundary 38
2.1.1.1 Implementational Remarks 43
2.1.2 Construction for the Dirichlet Boundary 47
2.1.2.1 Implementational Remarks 50
2.1.2.2 Simple 1D Example 53
2.1.3 Mixed Boundary Conditions 54
2.1.4 Computation of the System Matrix and the Right-Hand Side Vector 57
3 Stochastic Programming Perspective 59
3.1 Stochastic Shape Optimization Problem 60
3.1.1 Two-Stage Stochastic Shape Optimization Problem 61
3.1.2 Dual Problem and Saddle Point Formulation 64
3.2 Reformulation and Solution Plan for the Expectation-Based Model 71
3.3 Expected Excess 80
3.3.1 Barrier Method 81
3.3.2 Smooth Approximation 82
3.4 Excess Probability 83
4 Solving Shape Optimization Problems 87
4.1 Level Set Formulation 88
4.1.1 Computation of the Mean Curvature 90
4.2 Shape Derivative 91
4.3 Topological Derivative 99
4.4 Steepest Descent Algorithm 104
4.4.1 Regularized Descent Direction 108
5 Numerical Results 111
5.1 Deterministic and Expectation-Based Results 112
5.1.1 VSS and EVPI 122
5.2 Risk Aversion 124
A Appendix 131
A.1 Notation 131
A.2 Important Facts and Theorems 134
References 137
4 Solving Shape Optimization Problems (S. 77-78)
This chapter is dedicated to the actual numerical solution techniques we implemented to solve the (random) shape optimization problems described in Chapter 3. As noted in the beginning, we employed a steepest descent algorithm (see Section 4.4) together with a level set method (see Section 4.1).
The necessary function evaluations are done according to Algorithm 3.16, whereas the computation of the descent direction is described here in this chapter, making use of the shape derivative (see Section 4.2) and also the topological derivative (see Section 4.3). There are various methods that aim to solve shape optimization problems, and before we start describing our particular level set approach, we brie?y mention some of these methods. For example, there is the homogenization method (cf. Allaire [All02]) whose physical idea in principle consists of averaging heterogeneous media in order to derive effective properties. In [All02, Chapter 4], the method is applied to optimal design problems with linear elasticity in form of two-phase optimization problems.
The task is then to ?nd an optimal distribution of two elastic materials, i.e. there are no void areas. This results in an ill-posed optimization problem, which, however, homogenization theory provides a relaxation to by introducing generalized designs. Numerical examples can also be found in [HN97]. Another approach, namely topology optimization by the material distribution method, is described in the book by Bendsøe and Sigmund [BS03]. Each point in the design can have material or not1. In a discrete setting, there is a grid where each grid cell, or “pixel”, is either ?lled with material, or there is none.
This leads to nonlinear optimization problems with binary variables which indicate the presence or absence of material in the grid cells, respectively. In [SS03] for example, they show that certain nonlinear 0-1 topology optimization problems can be equivalently formulated as linear mixed 0-1 programs, which can be solved as such—at least on quite coarse grids. The idea described in [BS03], however, is to replace the integer variables with continuous ones, resulting in a density function with values between 0 and 1, and then to penalize intermediate values. This yields the so-called SIMP-model2. Various solution methods are mentioned in [BS03].
Claudia Stangl implemented this model in her diploma thesis [Sta08], also incorporating stochastic forces for the expectation-based problem, and solved it using IPOPT (cf. [WB06]). Maar and Schulz [MS00] describe the application of an interior point multigrid method for this type of problem. Newton’s method, involving second order shape derivatives (cf. [NR]), has been applied to some shape optimization problem for example in [NP02]. Level set methods provide another approach to tackling shape optimization problems. This is the method we applied to our problems, so we will describe it in more detail in the following section.
Erscheint lt. Verlag | 30.5.2010 |
---|---|
Reihe/Serie | Stochastic Programming | Stochastic Programming |
Zusatzinfo | 148 p. 39 illus., 26 illus. in color. |
Verlagsort | Wiesbaden |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Technik | |
Wirtschaft ► Betriebswirtschaft / Management ► Logistik / Produktion | |
Schlagworte | loadings • Optimization • PDE • programming • shape optimization • stochastic • Topology |
ISBN-10 | 3-8348-9396-X / 383489396X |
ISBN-13 | 978-3-8348-9396-3 / 9783834893963 |
Haben Sie eine Frage zum Produkt? |
Größe: 1,8 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich