Basics of Applied Stochastic Processes (eBook)
XIV, 443 Seiten
Springer Berlin (Verlag)
978-3-540-89332-5 (ISBN)
Stochastic processes are mathematical models of random phenomena that evolve according to prescribed dynamics. Processes commonly used in applications are Markov chains in discrete and continuous time, renewal and regenerative processes, Poisson processes, and Brownian motion. This volume gives an in-depth description of the structure and basic properties of these stochastic processes. A main focus is on equilibrium distributions, strong laws of large numbers, and ordinary and functional central limit theorems for cost and performance parameters. Although these results differ for various processes, they have a common trait of being limit theorems for processes with regenerative increments. Extensive examples and exercises show how to formulate stochastic models of systems as functions of a system's data and dynamics, and how to represent and analyze cost and performance measures. Topics include stochastic networks, spatial and space-time Poisson processes, queueing, reversible processes, simulation, Brownian approximations, and varied Markovian models.
The technical level of the volume is between that of introductory texts that focus on highlights of applied stochastic processes, and advanced texts that focus on theoretical aspects of processes.
Preface 7
Contents 10
Markov Chains 14
1.1 Introduction 15
1.2 Probabilities of Sample Paths 18
1.3 Construction of Markov Chains 21
1.4 Examples 23
1.5 Stopping Times and Strong Markov Property 29
1.6 Classification of States 32
1.7 Hitting and Absorbtion Probabilities 39
1.8 Branching Processes 43
1.9 Stationary Distributions 46
1.10 Limiting Distributions 53
1.11 Regenerative Property and Cycle Costs 55
1.12 Strong Laws of Large Numbers 58
1.13 Examples of Limiting Averages 63
1.14 Optimal Design of Markovian Systems 66
1.15 Closed Network Model 68
1.16 Open Network Model 72
1.17 Reversible Markov Chains 74
1.18 Markov Chain Monte Carlo 81
1.19 Markov Chains on Subspaces 84
1.20 Limit Theorems via Coupling 86
1.21 Criteria for Positive Recurrence 89
1.22 Review of Conditional Probabilities 94
1.23 Exercises 97
Renewal and Regenerative Processes 112
2.1 Renewal Processes 112
2.2 Strong Laws of Large Numbers 117
2.3 The Renewal Function 120
2.4 Future Expectations 127
2.5 Renewal Equations 127
2.6 Blackwell’s Theorem 129
2.7 Key Renewal Theorem 131
2.8 Regenerative Processes 134
2.9 Limiting Distributions for Markov Chains 139
2.10 Processes with Regenerative Increments 139
2.11 Average Sojourn Times in Regenerative Processes 142
2.12 Batch-Service Queueing System 145
2.13 Central Limit Theorems 148
2.14 Terminating Renewal Processes 152
2.15 Stationary Renewal Processes 157
2.16 Refined Limit Laws 161
2.17 Proof of the Key Renewal Theorem* 164
2.18 Proof of Blackwell’s Theorem* 166
2.19 Stationary-Cycle Processes* 168
2.20 Exercises 169
Poisson Processes 182
3.1 Poisson Processes on R+ 183
3.2 Characterizations of Classical Poisson Processes 186
3.3 Location of Points 189
3.4 Functions of Point Locations 192
3.5 Poisson Processes on General Spaces 194
3.6 Integrals and Laplace Functionals of Poisson Processes 196
3.7 Poisson Processes as Sample Processes 201
3.8 Deterministic Transformations of Poisson Processes 203
3.9 Marked and Space-Time Poisson Processes 207
3.10 Partitions and Translations of Poisson Processes 209
3.11 Markov/Poisson Processes 214
3.12 Poisson Input-Output Systems 216
3.13 Network of Mt/Gt/8 Stations 219
3.14 Cox Processes 224
3.15 Compound Poisson Processes 227
3.16 Poisson Law of Rare Events 229
3.17 Poisson Convergence Theorems* 231
3.18 Exercises 238
Continuous-Time Markov Chains 254
4.1 Introduction 255
4.2 Examples 258
4.3 Markov Properties 260
4.4 Transition Probabilities and Transition Rates 264
4.5 Existence of CTMCs 266
4.6 Uniformization, Travel Times and Transition Probabilities 268
4.7 Stationary and Limiting Distributions 271
4.8 Regenerative Property and Cycle Costs 276
4.9 Ergodic Theorems 277
4.10 Expectations of Cost and Utility Functions 282
4.11 Reversibility 285
4.12 Modeling of Reversible Phenomena 290
4.13 Jackson Network Processes 295
4.14 Multiclass Networks 300
4.15 Poisson Transition Times 304
4.16 Palm Probabilities 312
4.17 PASTA at Poisson Transitions 316
4.18 Relating Palm and Ordinary Probabilities 319
4.19 Stationarity Under Palm Probabilities 323
4.20 G/G/1, M/G/1 and G/M/1 Queues 327
4.21 Markov-Renewal Processes* 334
4.22 Exercises 336
Brownian Motion 354
5.1 Definition and Strong Markov Property 355
5.2 Brownian Motion as a Gaussian Process 358
5.3 Maximum Process and Hitting Times 362
5.4 Special Random Times 365
5.5 Martingales 367
5.6 Optional Stopping of Martingales 371
5.7 Hitting Times for Brownian Motion with Drift 374
5.8 Limiting Averages and Law of the Iterated Logarithm 377
5.9 Donsker’s Functional Central Limit Theorem 381
5.10 Regenerative and Markov FCLTs 386
5.11 Peculiarities of Brownian Sample Paths 390
5.12 Brownian Bridge Process 392
5.13 Geometric Brownian Motion 396
5.14 Multidimensional Brownian Motion 398
5.15 Brownian/Poisson Particle System 400
5.16 G/G/1 Queues in Heavy Traffic 402
5.17 Brownian Motion in a Random Environment 406
5.18 Exercises 407
Appendix 418
6.1 Probability Spaces and Random Variables 418
6.2 Table of Distributions 420
6.3 Random Elements and Stochastic Processes 422
6.4 Expectations as Integrals 423
6.5 Functions of Stochastic Processes 425
6.6 Independence 428
6.7 Conditional Probabilities and Expectations 430
6.8 Existence of Stochastic Processes 432
6.9 Convergence Concepts 434
Bibliographical Notes 440
References 442
Notation 448
Index 450
Erscheint lt. Verlag | 24.1.2009 |
---|---|
Reihe/Serie | Probability and Its Applications | Probability and Its Applications |
Zusatzinfo | XIV, 443 p. |
Verlagsort | Berlin |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Technik | |
Schlagworte | 60-02, 60-J10, 60-J27, 60-K05, 60-J25 • applied stochastic processes • Brownian motion • continuous-time Markov chain • Markov Chain • Poisson process • regenerative process • renewal process • stochastic network • Stochastic process |
ISBN-10 | 3-540-89332-6 / 3540893326 |
ISBN-13 | 978-3-540-89332-5 / 9783540893325 |
Haben Sie eine Frage zum Produkt? |
Größe: 4,5 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich