Group and Ring Theoretic Properties of Polycyclic Groups (eBook)
VIII, 128 Seiten
Springer London (Verlag)
978-1-84882-941-1 (ISBN)
Polycyclic groups are built from cyclic groups in a specific way. They arise in many contexts within group theory itself but also more generally in algebra, for example in the theory of Noetherian rings. The first half of this book develops the standard group theoretic techniques for studying polycyclic groups and the basic properties of these groups. The second half then focuses specifically on the ring theoretic properties of polycyclic groups and their applications, often to purely group theoretic situations.
The book is intended to be a study manual for graduate students and researchers coming into contact with polycyclic groups, where the main lines of the subject can be learned from scratch. Thus it has been kept short and readable with a view that it can be read and worked through from cover to cover. At the end of each topic covered there is a description without proofs, but with full references, of further developments in the area. An extensive bibliography then concludes the book.
Polycyclic groups are built from cyclic groups in a specific way. They arise in many contexts within group theory itself but also more generally in algebra, for example in the theory of Noetherian rings. They also touch on some aspects of topology, geometry and number theory. The first half of this book develops the standard group theoretic techniques for studying polycyclic groups and the basic properties of these groups. The second half then focuses specifically on the ring theoretic properties of polycyclic groups and their applications, often to purely group theoretic situations.The book is not intended to be encyclopedic. Instead, it is a study manual for graduate students and researchers coming into contact with polycyclic groups, where the main lines of the subject can be learned from scratch by any reader who has been exposed to some undergraduate algebra, especially groups, rings and vector spaces. Thus the book has been kept short and readable with a view that it can be read and worked through from cover to cover. At the end of each topic covered there is a description without proofs, but with full references, of further developments in the area. The book then concludes with an extensive bibliography of items relating to polycyclic groups.
Preface 6
Contents 8
1 Some Basic Group Theory 9
2 The Basic Theory of Polycyclic Groups 20
3 Some Ring Theory 36
4 Soluble Linear Groups 47
5 Further Group-Theoretic Properties of Polycyclic Groups 61
6 Hypercentral Groups and Rings 69
7 Groups Acting on Finitely Generated Commutative Rings 81
8 Prime Ideals in Polycyclic Group Rings 94
9 The Structure of Modules over Polycyclic Groups 104
10 Semilinear and Skew Linear Groups 113
Notation 121
Bibliography 124
Index 129
Erscheint lt. Verlag | 28.11.2009 |
---|---|
Reihe/Serie | Algebra and Applications | Algebra and Applications |
Zusatzinfo | VIII, 128 p. |
Verlagsort | London |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Statistik | |
Technik | |
Schlagworte | Algebra • group theory • Noetherian rings • polycyclic groups • Ring Theory • Vector Space |
ISBN-10 | 1-84882-941-8 / 1848829418 |
ISBN-13 | 978-1-84882-941-1 / 9781848829411 |
Haben Sie eine Frage zum Produkt? |
Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopierschutz. Eine Weitergabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persönlichen Nutzung erwerben.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich