Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Variational Principles of Continuum Mechanics (eBook)

I. Fundamentals
eBook Download: PDF
2009 | 2010
XVIII, 586 Seiten
Springer Berlin (Verlag)
978-3-540-88467-5 (ISBN)

Lese- und Medienproben

Variational Principles of Continuum Mechanics - Victor Berdichevsky
Systemvoraussetzungen
128,39 inkl. MwSt
(CHF 125,40)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Thereareabout500booksonvariationalprinciples. Theyareconcernedmostlywith the mathematical aspects of the topic. The major goal of this book is to discuss the physical origin of the variational principles and the intrinsic interrelations between them. For example, the Gibbs principles appear not as the rst principles of the theory of thermodynamic equilibrium but as a consequence of the Einstein formula for thermodynamic uctuations. The mathematical issues are considered as long as they shed light on the physical outcomes and/or provide a useful technique for direct study of variational problems. Thebookisacompletelyrewrittenversionoftheauthor'smonographVariational Principles of Continuum Mechanics which appeared in Russian in 1983. I have been postponing the English translation because I wished to include the variational pr- ciples of irreversible processes in the new edition. Reaching an understanding of this subject took longer than I expected. In its nal form, this book covers all aspects of the story. The part concerned with irreversible processes is tiny, but it determines the accents put on all the results presented. The other new issues included in the book are: entropy of microstructure, variational principles of vortex line dynamics, va- ational principles and integration in functional spaces, some stochastic variational problems, variational principle for probability densities of local elds in composites with random structure, variational theory of turbulence; these topics have not been covered previously in monographic literature.

Preface 6
Acknowledgements 7
Contents - I. Fundamentals 8
Contents - II. Applications 12
Part I Fundamentals 16
1 Variational Principles 17
Prehistory 17
Mopertuis Variational Principle 25
Euler's Calculus of Variations 29
Lagrange Variational Principle 34
Jacobi Variational Principle 40
Hamilton Variational Principle 40
Hamiltonian Equations 46
Physical Meaning of the Least Action Principle 50
2 Thermodynamics 59
Thermodynamic Description 59
Temperature 61
Entropy 65
Entropy and Probability 73
Gibbs Principles 73
Nonequilibrium Processes 74
Secondary Thermodynamics and Higher Order Thermodynamics 78
3 Continuum Mechanics 80
Continuum Kinematics 80
Basic Laws of Continuum Mechanics 106
Classical Continuum Models 111
Thermodynamic Formalism 125
4 Principle of Least Action in Continuum Mechanics 129
Variation of Integral Functionals 129
Variations of Kinematic Parameters 133
Principle of Least Action 137
Variational Equations 140
Models with High Derivatives 146
Tensor Variations 148
5 Direct Methods of Calculus of Variations 160
Introductory Remarks 161
Quadratic Functionals 174
Existence of the Minimizing Element 178
Uniqueness of the Minimizing Element 179
Upper and Lower Estimates 183
Dual Variational Principles 189
Legendre and Young-Fenchel Transformations 192
Examples of Dual Variational Principles 212
Hashin-Strikman Variational Principle 227
Variational Problems with Constraints 235
Variational-Asymptotic Method 254
Variational Problems and Functional Integrals 281
Miscellaneous 289
Part II Variational Features of Classical Continuum Models 294
6 Statics of a Geometrically Linear Elastic Body 295
Gibbs Principle 295
Boundedness from Below 299
Complementary Energy 303
Reissner Variational Principle 304
Physically Linear Elastic Body 304
Castigliano Variational Principle 308
Hashin-Strikman Variational Principle 316
Internal Stresses 328
Thermoelasticity 331
Dislocations 333
Continuously Distributed Dislocations 338
7 Statics of a Geometrically Nonlinear Elastic Body 350
Energy Functional 350
Gibbs Principle 359
Dual Variational Principle 364
Phase Equilibrium of Elastic Bodies 378
8 Dynamics of Elastic Bodies 384
Least Action vs Stationary Action 384
Nonlinear Eigenvibrations 386
Linear Vibrations: The Rayleigh Principle 388
The Principle of Least Action in Eulerian Coordinates 390
9 Ideal Incompressible Fluid 397
Least Action Principle 397
General Features of Solutions of Momentum Equations 400
Variational Principles in Eulerian Coordinates 404
Potential Flows 413
Variational Features of Kinetic Energy in Vortex Flows 416
Dynamics of Vortex Lines 422
Quasi-Two-Dimensional and Two-Dimensional Vortex Flows 435
Dynamics of Vortex Filaments in Unbounded Space 441
Vortex Sheets 452
Symmetry of the Action Functional and the Integrals of Motion 454
Variational Principles for Open Flows 461
10 Ideal Compressible Fluid 463
Variational Principles in Lagrangian Coordinates 463
General Features of Dynamics of Compressible Fluid 465
Variational Principles in Eulerian Coordinates 469
Potential Flows 476
Incompressible Fluid as a Limit Case of Compressible Fluid 478
11 Steady Motion of Ideal Fluid and Elastic Body 481
The Kinematics of Steady Flow 481
Steady Motion with Impenetrable Boundaries 483
Open Steady Flows of Ideal Fluid 487
Two-Dimensional Flows 491
Variational Principles on the Set of Equivortical Flows 492
Potential Flows 498
Regularization of Functionals in Unbounded Domains 501
12 Principle of Least Dissipation 503
Heat Conduction 503
Creeping Motion of Viscous Fluid 506
Ideal Plasticity 510
Fluctuations and Variations in Steady Non-Equilibrium Processes 513
13 Motion of Rigid Bodies in Fluids 517
Motion of a Rigid Body in Creeping Flow of Viscous Fluid 517
Motion of a Body in Ideal Incompressible Fluid 522
Motion of a Body in a Viscous Fluid 529
Appendices 538
On Variational Formulation of Arbitrary Systems of Equations 545
A Variational Principle for Probability Density 550
Lagrange Variational Principle 556
Microdynamics Yielding Classical Thermodynamics 560
Bibliographic Comments 563
Bibliography 568
Index 581
Notation 587

Erscheint lt. Verlag 18.9.2009
Reihe/Serie Interaction of Mechanics and Mathematics
Interaction of Mechanics and Mathematics
Zusatzinfo XVIII, 586 p.
Verlagsort Berlin
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Naturwissenschaften Physik / Astronomie
Technik Bauwesen
Technik Maschinenbau
Schlagworte Calculus • Calculus of Variations • Continuum Mechanics • degrees of freedom • Dissipation • Entropy • fluid- and aerodynamics • Mechanics • statics • thermodynamics • Variational Principles
ISBN-10 3-540-88467-X / 354088467X
ISBN-13 978-3-540-88467-5 / 9783540884675
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich