Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Course in Formal Languages, Automata and Groups -  Ian M. Chiswell

Course in Formal Languages, Automata and Groups (eBook)

eBook Download: PDF
2008 | 1. Auflage
IX, 161 Seiten
Springer London (Verlag)
978-1-84800-940-0 (ISBN)
Systemvoraussetzungen
35,69 inkl. MwSt
(CHF 34,85)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The study of formal languages and automata has proved to be a source of much interest and discussion amongst mathematicians in recent times. This book, written by Professor Ian Chiswell, attempts to provide a comprehensive textbook for undergraduate and postgraduate mathematicians with an interest in this developing field. The first three Chapters give a rigorous proof that various notions of recursively enumerable language are equivalent. Chapter Four covers the context-free languages, whereas Chapter Five clarifies the relationship between LR(k) languages and deterministic (context-free languages). Chiswell's book is unique in that it gives the reader a thorough introduction into the connections between group theory and formal languages. This information, contained within the final chapter, includes work on the Anisimov and Muller-Schupp theorems.


This book is based on notes for a master's course given at Queen Mary, University of London, in the 1998/9 session. Such courses in London are quite short, and the course consisted essentially of the material in the ?rst three chapters, together with a two-hour lecture on connections with group theory. Chapter 5 is a considerably expanded version of this. For the course, the main sources were the books by Hopcroft and Ullman ([20]), by Cohen ([4]), and by Epstein et al. ([7]). Some use was also made of a later book by Hopcroft and Ullman ([21]). The ulterior motive in the ?rst three chapters is to give a rigorous proof that various notions of recursively enumerable language are equivalent. Three such notions are considered. These are: generated by a type 0 grammar, recognised by a Turing machine (deterministic or not) and de?ned by means of a Godel * numbering, having de?ned "e;recursively enumerable"e; for sets of natural numbers. It is hoped that this has been achieved without too many ar- ments using complicated notation. This is a problem with the entire subject, and it is important to understand the idea of the proof, which is often quite simple. Two particular places that are heavy going are the proof at the end of Chapter 1 that a language recognised by a Turing machine is type 0, and the proof in Chapter 2 that a Turing machine computable function is partial recursive.

Preface.- Contents.- 1. Grammars and Machine Recognition.- 2. Recursive Functions.- 3. Recursively Enumerable Sets and Languages.- 4. Context-free language.- 5. Connections with Group Theory.- A. Results and Proofs Omitted in the Text.- B. The Halting Problem and Universal Turing Machines.- C. Cantor's Diagonal Argument.- D. Solutions to Selected Exercises.- References.- Index.

Erscheint lt. Verlag 1.1.2009
Reihe/Serie Universitext
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Technik
Schlagworte Automata • formal language • Formal Languages • Grammars • group theory • Muller-Schupp Theorem • recursive function • Word problem
ISBN-10 1-84800-940-2 / 1848009402
ISBN-13 978-1-84800-940-0 / 9781848009400
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 1,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich