Machine Learning in Cyber Trust (eBook)
XVI, 362 Seiten
Springer US (Verlag)
978-0-387-88735-7 (ISBN)
Many networked computer systems are far too vulnerable to cyber attacks that can inhibit their functioning, corrupt important data, or expose private information. Not surprisingly, the field of cyber-based systems is a fertile ground where many tasks can be formulated as learning problems and approached in terms of machine learning algorithms.
This book contains original materials by leading researchers in the area and covers applications of different machine learning methods in the reliability, security, performance, and privacy issues of cyber space. It enables readers to discover what types of learning methods are at their disposal, summarizing the state-of-the-practice in this significant area, and giving a classification of existing work.
Those working in the field of cyber-based systems, including industrial managers, researchers, engineers, and graduate and senior undergraduate students will find this an indispensable guide in creating systems resistant to and tolerant of cyber attacks.
Many networked computer systems are far too vulnerable to cyber attacks that can inhibit their functioning, corrupt important data, or expose private information. Not surprisingly, the field of cyber-based systems is a fertile ground where many tasks can be formulated as learning problems and approached in terms of machine learning algorithms.This book contains original materials by leading researchers in the area and covers applications of different machine learning methods in the reliability, security, performance, and privacy issues of cyber space. It enables readers to discover what types of learning methods are at their disposal, summarizing the state-of-the-practice in this significant area, and giving a classification of existing work.Those working in the field of cyber-based systems, including industrial managers, researchers, engineers, and graduate and senior undergraduate students will find this an indispensable guide in creating systems resistant to and tolerant of cyber attacks.
Preface 6
Contents 9
Part I: Cyber System 15
1 Cyber-Physical Systems: A New Frontier 16
Part II: Security 27
2 Misleading Learners: Co-opting Your Spam Filter 28
3 Survey of Machine Learning Methods for Database Security 63
4 Identifying Threats Using Graph-based Anomaly Detection 82
5 On the Performance of Online Learning 118
6 Efficient Mining and Detection of Sequential Intrusion Patterns for Network Intrusion Detection Systems 142
7 A Non-Intrusive Approach to Enhance Legacy Embedded Control Systems with Cyber Protection Features 164
8 Image Encryption and Chaotic Cellular Neural Network 191
Part III: Privacy 222
9 From Data Privacy to Location Privacy 223
10 Privacy Preserving Nearest Neighbor Search 253
Part IV: Reliability 283
11 High-Confidence Compositional Reliability Assessment of SOA-Based Systems Using Machine Learning Techniques 284
12 Model, Properties, and Applications of Context-Aware Web Services 328
Index 364
Erscheint lt. Verlag | 5.4.2009 |
---|---|
Zusatzinfo | XVI, 362 p. 100 illus. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Informatik ► Netzwerke ► Sicherheit / Firewall | |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | classification • Control • cyber terrorism • Intrusion Detection • learning • Learning Algorithms • machine learning • Performance • privacy • Reliability • security • Spam • web security |
ISBN-10 | 0-387-88735-0 / 0387887350 |
ISBN-13 | 978-0-387-88735-7 / 9780387887357 |
Haben Sie eine Frage zum Produkt? |
Größe: 10,1 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich