Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Universal Algebra -  George Gratzer

Universal Algebra (eBook)

eBook Download: PDF
2008 | 2. Auflage
XIX, 601 Seiten
Springer New York (Verlag)
978-0-387-77487-9 (ISBN)
Systemvoraussetzungen
67,36 inkl. MwSt
(CHF 65,80)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Universal Algebra heralded as '. . . the standard reference in a field notorious for the lack of standardization . . .', has become the most authoritative, consistently relied on text in a field with applications in other branches of algebra and other fields such as combinatorics, geometry, and computer science. Each chapter is followed by an extensive list of exercises and problems. The 'state of the art' account also includes new appendices (with contributions from B. Jónsson, R. Quackenbush, W. Taylor, and G. Wenzel) and a well selected additional bibliography of over 1250 papers and books which makes this an indispensable new edition for students, faculty, and workers in the field. 'This book will certainly be, in the years to come, the basic reference to the subject.' The American Mathematical Monthly (First Edition) 'In this reviewer's opinion [the author] has more than succeeded in his aim. The problems at the end of each chapter are well-chosen, there are more than 650 of them. The book is especially suitable for self-study, as the author frequently provides ample explanation not only of what he is proving, but also of how and why he is proving it. As a reference work for the specialist or a text for the student, the book is highly recommended.' Mathematical Reviews (First Edition) 'Since the first day of its appearance in 1968, this book has been the standard reference in universal algebra, and no book since has reached its quality.' Journal of Symbolic Logic (Second Edition)
Universal Algebra heralded as "e;. . . the standard reference in a field notorious for the lack of standardization . . ."e;, has become the most authoritative, consistently relied on text in a field with applications in other branches of algebra and other fields such as combinatorics, geometry, and computer science.Each chapter is followed by an extensive list of exercises and problems. The "e;state of the art"e; account also includes new appendices (with contributions from B. Jonsson, R. Quackenbush, W. Taylor, and G. Wenzel) and a well selected additional bibliography of over 1250 papers and books which makes this an indispensable new edition for students, faculty, and workers in the field."e;This book will certainly be, in the years to come, the basic reference to the subject."e; The American Mathematical Monthly (First Edition)"e;In this reviewer's opinion [the author] has more than succeeded in his aim. The problems at the end of each chapter are well-chosen; there are more than 650 of them. The book is especially suitable for self-study, as the author frequently provides ample explanation not only of what he is proving, but also of how and why he is proving it. As a reference work for the specialist or a text for the student, the book is highly recommended."e; Mathematical Reviews (First Edition)"e;Since the first day of its appearance in 1968, this book has been the standard reference in universal algebra, and no book since has reached its quality."e; Journal of Symbolic Logic (Second Edition)

George Grätzer is a Doctor of Science at the University of Manitoba. He authored three other books on LaTex: First Steps in LaTeX and Math into LateX, which is now in its third edition and has sold more than 6000 copies. Math into LaTeX was chosen by the Mathematics Editor of Amazon.com as one of the ten best books of 2000. He has also written many articles and a few books on the subject of lattices and universal algebra. In addition, Grätzer is the founder of the international mathematical journal, Algebra Universalis.

Basic Concepts.- Subalgebras and Homomorphisms.- Partial Algebras.- Constructions of Algebras.- Free Algebras.- Independence.- Elements of Model Theory.- Elementary Properties of Algebraic Constructions.- Free Structures.- Appendix 1. General Survey.- Appendix 2. The Problems.- Appendix 3. Congruence Varieties.- Appendix 4. Equational Logic by Walter Taylor.- Appendix 5. Primality the influence of Boolean Algebras in Universal Algebra.- Appendix 6 Equational Compactness.- Appendix 7 The Independence Proof.

Erscheint lt. Verlag 15.12.2008
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Algebra
Technik
Schlagworte Algebra • free algebras • Homomorphism • homomorphisms • partial algebras • subalgebras
ISBN-10 0-387-77487-4 / 0387774874
ISBN-13 978-0-387-77487-9 / 9780387774879
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 54,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich