Prediction of Burnout (eBook)
248 Seiten
Diplomica Verlag
978-3-8366-1141-1 (ISBN)
The burnout process is related to organizational, personal, interpersonal, social, and cultural variables and these relationships are not exclusively linear. Due to this nonlinearity, hierarchical stepwise multiple regression or other linear statistical methods, may perhaps not be the most suitable method to analyze the data effectively. Compounding the dilemma is that multiple linear regression returns no direct indicator with regard to whether the data is best portrayed linearly. In standard least squares linear regression, the model has to be specified previously and assumptions have to be made concerning the underlying relationship between independent variables and dependent variables. Since by default, the relationship is often assumed to be linear, the regression line can be erroneous even though the error of the fit can be small. Artificial neural networks do not have these limitations with nonlinearities and are therefore predestined for the analysis of nonlinear relationships.
This study is a complex research of burnout that includes socio-demographic characteristics, job stressors, and hardy personality. Typically, studies on burnout have investigated primarily the effects of organizational factors. Recently, authors revealed and confirmed the important effects of personality variables on the burnout process.
The objective of developing an instrument to predict burnout (NuBuNet abbreviation for Nursing Burnout Network) in nurses is accomplished by using two different types of artificial neural networks: A three-layer feed-forward network with the gradient decent back-propagation training algorithm and a radial basis function network with two different training algorithms: the pseudo inverse algorithm and a hybrid algorithm.
The implementation of the artificial neural networks used in this study is carried out in a MATLAB® development environment. Instead of writing each artificial neural network as a stand-alone program, an object-oriented programming style is chosen to include all functions into one single system. Three artificial neural networks are implemented in the technical part of this study. A self-organizing map, a three-layer back-propagation network, and a radial basis function network. Whereas the self-organizing map is only used in the data preparation process, the back-propagation network and the radial basis function network is used in the burnout model approximation.
After an exhaustive training and simulation session including more than 150 networks and an analysis of all results, the network with the best results is chosen to be compared to the hierarchical stepwise multiple regression.
The network paradigms are better suited for the analysis of burnout than hierarchical stepwise multiple regression. Both can capture nonlinear relationships that are relevant for theory development. At predicting the three burnout sub-dimensions emotional exhaustion, depersonalization, and lack of personal accomplishment however, the radial basis function network is slightly better than the three-layer feed-forward network.
Erscheint lt. Verlag | 30.5.2008 |
---|---|
Zusatzinfo | 66 Abb. |
Sprache | englisch |
Themenwelt | Geisteswissenschaften ► Psychologie ► Test in der Psychologie |
Mathematik / Informatik ► Informatik | |
Schlagworte | Informatik • Netzwerk • neural network • Radial Basis Function Network • Regression |
ISBN-10 | 3-8366-1141-4 / 3836611414 |
ISBN-13 | 978-3-8366-1141-1 / 9783836611411 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |

Größe: 2,6 MB
Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopierschutz. Eine Weitergabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persönlichen Nutzung erwerben.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich