Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Statistical Monitoring of Clinical Trials (eBook)

A Unified Approach
eBook Download: PDF
2006 | 2006
XIV, 268 Seiten
Springer New York (Verlag)
978-0-387-44970-8 (ISBN)

Lese- und Medienproben

Statistical Monitoring of Clinical Trials - Michael A. Proschan, K. K. Gordon Lan, Janet Turk Wittes
Systemvoraussetzungen
139,09 inkl. MwSt
(CHF 135,85)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The approach taken in this book is, to studies monitored over time, what the Central Limit Theorem is to studies with only one analysis. Just as the Central Limit Theorem shows that test statistics involving very different types of clinical trial outcomes are asymptotically normal, this book shows that the joint distribution of the test statistics at different analysis times is asymptotically multivariate normal with the correlation structure of Brownian motion ('the B-value') - irrespective of the test statistic. Thus, this book offers statisticians an accessible, incremental approach to understanding Brownian motion as related to clinical trials.


The approach taken in this book is to studies monitored over time, what the Central Limit Theorem is to studies with only one analysis. Just as the Central Limit Theorem shows that test statistics involving very different types of clinical trial outcomes are asymptotically normal, this book shows that the joint distribution of the test statistics at different analysis times is asymptotically multivariate normal with the correlation structure of Brownian motion ("e;the B-value"e;) irrespective of the test statistic. The so-called B-value approach to monitoring allows us to use, for different types of trials, the same boundaries and the same simple formula for computing conditional power. Although Brownian motion may sound complicated, the authors make the approach easy by starting with a simple example and building on it, one piece at a time, ultimately showing that Brownian motion works for many different types of clinical trials.The book will be very valuable to statisticians involved in clinical trials. The main body of the chapters is accessible to anyone with knowledge of a standard mathematical statistics text. More mathematically advanced readers will find rigorous developments in appendices at the end of chapters. Reading the book will develop insight into not only monitoring, but power, survival analysis, safety, and other statistical issues germane to clinical trials.Michael Proschan, Gordon Lan, and Janet Wittes are elected Fellows of the American Statistical Association. All have spent formative years in the Biostatistics Research Branch of the National Heart, Lung, and Blood Institute (NHLBI/NIH). While there, they were intimately involved in the design and statistical monitoring of large-scale randomized clinical trials, developing methodology to aid in their monitoring. For example, Lan developed, with DeMets, the now widely-used spending function approach to group sequential designs, whose properties were further investigated byProschan. The B-value approach used in the book was introduced in a very influential paper by Lan and Wittes. The statistical theory behind conditional power was developed by Lan, along with Simon and Halperin, and was the cornerstone for the conditional error approach to adaptive clinical trials introduced by Proschan and Hunsberger. All three authors have expertise in adaptive methodology for clinical trials.Michael Proschan is a Mathematical Statistician at the National Institutes of Health; Gordon Lan is Senior Director of Biometrics at Johnson & Johnson Pharmaceutical Research and Development, L.L.C.; Janet Wittes is President of Statistics Collaborative, a statistical consulting company she founded in 1990.

Preface 7
Contents 9
1 Introduction 14
2 A General Framework 21
2.1 Hypothesis Testing: The Null Distribution of Test Statistics Over Time 22
2.2 An Estimation Perspective 30
2.3 Connection Between Estimators, Sums, Z-Scores, and Brownian Motion 33
2.4 Maximum Likelihood Estimation 36
2.5 Other Settings Leading to E-Processes and Brownian Motion 40
2.6 The Normal Linear and Mixed Models 42
2.7 When Is Brownian Motion Not Appropriate? 48
2.8 Summary 50
2.9 Appendix 51
3 Power: Conditional, Unconditional, and Predictive 55
3.1 Unconditional Power 55
3.2 Conditional Power for Futility 57
3.3 Varied Uses of Conditional Power 65
3.4 Properties of Conditional Power 69
3.5 A Bayesian Alternative: Predictive Power 72
3.6 Summary 75
3.7 Appendix 76
4 Historical Monitoring Boundaries 79
4.1 How Bad Can the Naive Approach Be? 79
4.2 The Pocock Procedure 81
4.3 The Haybittle Procedure and Variants 81
4.4 The O’Brien-Fleming Procedure 83
4.5 A Comparison of the Pocock and O’Brien-Fleming Boundaries 84
4.6 Effect of Monitoring on Power 87
4.7 Appendix: Computation of Boundaries Using Numerical Integration 89
5 Spending Functions 92
5.1 Upper Boundaries 92
5.2 Upper and Lower Boundaries 101
5.3 Summary 103
5.4 Appendix 103
6 Practical Survival Monitoring 109
6.1 Introduction 109
6.2 Survival Trials with Staggered Entry 109
6.3 Stochastic Process Formulation and Linear Trends 111
6.4 A Real Example 112
6.5 Nonlinear Trends of the Statistics: Analogy with Monitoring a t-Test 113
6.6 Considerations for Early Termination 114
6.7 The Information Fraction with Survival Data 115
7 Inference Following a Group-Sequential Trial 122
7.1 Likelihood, Sufficiency, and (Lack of) Completeness 122
7.2 One-Tailed p-Values 125
7.3 Properties of p-Values 134
7.4 Confidence Intervals 135
7.5 Estimation 140
7.6 Summary 144
7.7 Appendix: Proof that B( t ) t Overestimates 0 in the One-Tailed Setting 144
8 Options When Brownian Motion Does Not Hold 146
8.1 Small Sample Sizes 146
8.2 Permutation Tests 152
8.3 The Bonferroni Method 158
8.4 Summary 159
8.5 Appendix 160
9 Monitoring for Safety 163
9.1 Example: Inference from a Sample Size of One 163
9.2 Example: Inference from Multiple Endpoints 164
9.3 General Considerations 165
9.4 What Safety Data Look Like 168
9.5 Looking for a Single Adverse Event 171
9.6 Looking for Multiple Adverse Events 180
9.7 Summary 181
10 Bayesian Monitoring 183
10.1 Introduction 183
10.2 The Bayesian Paradigm Applied to B-Values 184
10.3 The Need for a Skeptical Prior 185
10.4 A Comparison of Bayesian and Frequentist Boundaries 188
10.5 Example 190
10.6 Summary 192
11 Adaptive Sample Size Methods 193
11.1 Introduction 193
11.2 Methods Using Nuisance Parameter Estimates: The Continuous Outcome Case 194
11.3 Methods Using Nuisance Parameter Estimates: The Binary Outcome Case 207
11.4 Adaptive Methods Based on the Treatment Effect 211
11.5 Summary 218
12 Topics Not Covered 220
12.1 Introduction 220
12.2 Continuous Sequential Boundaries 221
12.3 Other Types of Group-Sequential Boundaries 222
12.4 Reverse Stochastic Curtailing 223
12.5 Monitoring Studies with More Than Two Arms 224
12.6 Monitoring for Equivalence and Noninferiority 225
12.7 Repeated Confidence Intervals 225
13 Appendix I: The Logrank and Related Tests 227
13.1 Hazard Functions 228
13.2 Linear Rank Statistics 231
13.3 Payment Functions and Score Functions 237
13.4 Censored Survival Data 239
13.5 The U-Statistic Approach to the Wilcoxon Statistic 240
13.6 The Logrank and Weighted Mantel-Haenszel Statistics 241
13.7 Monitoring Survival Trials 243
14 Appendix II: Group-Sequential Software 244
14.1 Introduction 244
14.2 Before the Trial Begins: Power and Sample Size 244
14.3 During the Trial: Computation of Boundaries 246
14.4 After the Trial: p-Value, Parameter Estimate, and Confidence Interval 247
14.5 Other Features of the Program 249
References 252
Index 260

Erscheint lt. Verlag 31.12.2006
Reihe/Serie Statistics for Biology and Health
Statistics for Biology and Health
Zusatzinfo XIV, 268 p. 32 illus.
Verlagsort New York
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Medizin / Pharmazie Allgemeines / Lexika
Technik
Schlagworte biometrics • Clinical Trials • Correlation • Mathematical Statistics • Methodology • Monitoring • Statistics • Survival Analysis
ISBN-10 0-387-44970-1 / 0387449701
ISBN-13 978-0-387-44970-8 / 9780387449708
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Die Statistik-Programmiersprache verständlich erklärt

von Andrie de Vries; Joris Meys

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
CHF 21,45