Low Power Methodology Manual (eBook)
XVI, 300 Seiten
Springer US (Verlag)
978-0-387-71819-4 (ISBN)
This book provides a practical guide for engineers doing low power System-on-Chip (SoC) designs. It covers various aspects of low power design from architectural issues and design techniques to circuit design of power gating switches. In addition to providing a theoretical basis for these techniques, the book addresses the practical issues of implementing them in today's designs with today's tools.
ABOUT THE AUTHORS:
Michael Keating is a Synopsys Fellow in the company's Advanced Technology Group, focusing on IP development methodology, hardware and software design quality and low power design.
David Flynn is an ARM R&D Fellow and has been with the company since 1991, specializing in low power System-on-Chip IP deployment and methodology.
Robert Aitken is an ARM R&D Fellow. His areas of responsibility include memory architecture, design for testability and design for manufacturability.
Alan Gibbons is a Principal Engineer at Synopsys, with a focus on development of advanced methodology and technology for ARM processor-based system design.
Kaijian Shi is a Principal Consultant in the Professional Services Group of Synopsys, specializing in low power design methodology and implementation.
"e;Tools alone aren't enough to reduce dynamic and leakage power in complex chip designs - a well-planned methodology is needed. Following in the footsteps of the successful Reuse Methodology Manual (RMM), authors from ARM and Synopsys have written this Low Power Methodology Manual (LPMM) to describe [such] [a] low-power methodology with a practical, step-by-step approach."e;Richard Goering, Software Editor, EE Times Excellent compendium of low-power techniques and guidelines with balanced content spanning theory and practical implementation. The LPMM is a very welcome addition to the field of low power SoC implementation that has for many years operated in a largely ad-hoc fashion. Sujeeth Joseph, Chief Architect - Semiconductor and Systems Solutions Unit, Wipro Technologies The LPMM enables broader adoption of aggressive power management techniques based on extensive experience and silicon example with real data that every SOC designer can use to meet the difficulties faced in managing the power issues in deep submicron designs. Anil Mankar, Sr VP Worldwide Core Engineering and Chief Development Officer, Conexant Systems Inc. Managing power, at 90nm and below, introduces significant challenges to design flow. The LPMM is a timely and immediately useful book that shows how combination of tools, IP and methodology can be used together to address power management. Nick Salter, Head of Chip Integration, CSR plc.
ABOUT THE AUTHORS: Michael Keating is a Synopsys Fellow in the company’s Advanced Technology Group, focusing on IP development methodology, hardware and software design quality and low power design. David Flynn is an ARM R&D Fellow and has been with the company since 1991, specializing in low power System-on-Chip IP deployment and methodology. Robert Aitken is an ARM R&D Fellow. His areas of responsibility include memory architecture, design for testability and design for manufacturability. Alan Gibbons is a Principal Engineer at Synopsys, with a focus on development of advanced methodology and technology for ARM processor-based system design. Kaijian Shi is a Principal Consultant in the Professional Services Group of Synopsys, specializing in low power design methodology and implementation.
Preface 6
Table of Contents 8
1 Introduction 15
1.1 Overview 15
1.2 Scope of the Problem 16
1.3 Power vs. Energy 17
1.4 Dynamic Power 18
1.5 The Conflict Between Dynamic and Static Power 21
1.6 Static Power 22
1.7 Purpose of This Book 24
2 Standard Low Power Methods 27
2.1 Clock Gating 27
2.2 Gate Level Power Optimization 29
2.3 Multi VDD 30
2.4 Multi-Threshold Logic 31
2.5 Summary of the Impact of Standard Low Power Techniques 33
3 Multi- Voltage Design 34
3.1 Challenges in Multi-Voltage Designs 35
3.2 Voltage Scaling Interfaces – Level Shifters 35
3.3 Timing Issues in Multi-Voltage Designs 42
3.4 Power Planning for Multi-Voltage Design 43
3.5 System Design Issues with Multi-Voltage Designs 44
4 Power Gating Overview 45
4.1 Dynamic and Leakage Power Profiles 45
4.2 Impact of Power Gating on Classes of Sub-Systems 48
4.3 Principles of Power Gating Design 49
5 Designing Power Gating 53
5.1 Switching Fabric Design 54
5.2 Signal Isolation 57
5.3 State Retention and Restoration Methods 62
5.4 Power Gating Control 71
5.5 Power Gating Design Verification – RTL Simulation 75
5.6 Design For Test Considerations 82
6.1 Hierarchy and Power Gating 86
6 Architectural Issues for Power Gating 86
6.2 Power Networks and Their Control 89
6.3 Power State Tables and Always On Regions 93
7 A Power Gating Example 95
7.1 Leakage Modes Supported 95
7.2 Design Partitioning 98
7.3 Isolation 102
7.4 Retention 104
7.5 Inferring Power Gating and Retention 105
7.6 Measurements and Analysis 106
8 IP Design for Low Power 111
8.1 Architecture and Partitioning for Power Gating 112
8.2 Power Controller Design for the USB OTG 115
8.3 Issues in Designing Portable Power Controllers 118
8.4 Clocks and Resets 119
8.5 Verification 119
8.6 Packaging IP for Reuse with Power Intent 120
8.7 UPF for the USB OTG Core 121
8.8 USB OTG Power Gating Controller State Machine 124
9 Frequency and Voltage Scaling Design 130
9.1 Dynamic Power and Energy 131
9.2 Voltage Scaling Approaches 134
9.3 Dynamic Voltage and Frequency Scaling (DVFS) 134
9.4 CPU Subsystem Design Issues 138
9.5 Adaptive Voltage Scaling (AVS) 139
9.6 Level Shifters and Isolation 140
9.7 Voltage Scaling Interfaces – Effect on Synchronous Timing 141
9.8 Control of Voltage Scaling 145
10 Examples of Voltage Design and Frequency Scaling Examples of Voltage 147
10.1 Voltage Scaling - A Worked Example for UMC 130nm 147
10.2 65nm Voltage Scaling – A Worked Example for TSMC 158
11 Implementing Multi- Voltage, Power Gated Designs 163
11.1 Design Partitioning 166
11.2 Design Flow Overview 168
11.3 Synthesis 170
11.4 Multi Corner Multi Mode Optimization with Voltage Scaling Designs 179
11.5 Design Planning 181
11.6 Power Planning 185
11.7 Clock Tree Synthesis 188
11.8 Power Analysis 191
11.9 Timing Analysis 192
11.10Low Power Validation 193
11.11 Manufacturing Test 193
12 Physical Libraries 195
12.1 Standard Cell Libraries 195
12.2 Special Cells - Isolation Cells 198
12.3 Special Cells - Level Shifters 203
12.4 Memories 206
12.5 Power Gating Strategies and Structures 208
12.6 Power Gating Cells 212
12.7 Power Gated Standard Cell Libraries 214
13 Retention Register Design 216
13.1 Retention Registers 216
13.2 Memory Retention Methods 226
14 Design of the Power Switching Network 231
14.1 Ring vs. Grid Style 231
14.2 Header vs. Footer Switch 238
14.3 Rail vs. Strap VDD Supply 242
14.4 A Sleep Transistor Example 245
14.5 Wakeup Current and Latency Control Methods 246
14.6 An Example of a Dual Daisy Chain Sleep Transistor Implementation 252
A Sleep Transistor Design 254
A.1 Sleep Transistor Design Metrics 255
PMOS Vth (Vdd=1, T=30, Vbb=0..1V) 260
Vth ( V) 260
A.2 Layout Design for Area Efficiency 265
A.3 Single Row vs. Double Row 267
A.4 In-rush Current and Latency Analysis 268
B UPF Command Syntax 271
B.1 add_pst_state 272
B.2 connect_supply_net 273
B.3 create_power_domain 275
B.4 create_power_switch 277
B.5 create_pst 279
B.6 create_supply_net 280
B.7 create_supply_port 281
B.8 set_domain_supply_net 282
B.9 set_isolation 283
B.10 set_isolation_control 285
B.11 set_level_shifter 287
B.12 set_retention 289
B.13 set_retention_control 291
B.14 set_scope 292
Glossary 294
Bibliography 296
Index 300
Erscheint lt. Verlag | 31.7.2007 |
---|---|
Reihe/Serie | Integrated Circuits and Systems | Integrated Circuits and Systems |
Zusatzinfo | XVI, 300 p. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Informatik ► Weitere Themen ► Hardware |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | Aitken • Circuit Design • Development • Flynn • Gibbons • Keating • Low Power Methodology • Network • Power Gating • power management • power management techniques • semiconductor • Shi • SoC • Software • Standard • System-on-Chip • System on chip (SoC) • tools, IP and methodology • unified power format • UPF |
ISBN-10 | 0-387-71819-2 / 0387718192 |
ISBN-13 | 978-0-387-71819-4 / 9780387718194 |
Haben Sie eine Frage zum Produkt? |
Größe: 5,6 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich