Modeling of Biological Materials (eBook)
XVI, 358 Seiten
Birkhauser Boston (Verlag)
978-0-8176-4411-6 (ISBN)
This unique collection highlights the central role played by modeling in general, and the modeling of mechanical considerations that have an effect on living matter. The volume collects several survey papers by actively working specialists, dealing with some of the most important problems - both theoretical and practical - in biomechanics. Written in a user-friendly style, these papers clearly explain both the biomedical and mechanical backgrounds associated with complex phenomena. This book may be used in interdisciplinary introductory courses covering various biomechanical topics for graduate students in applied mathematics, engineering, and biomedicine.
One of the primary purposes and obligations of science, in addition to - derstandingnatureingeneralandlifeinparticular, istoassistinenhancing the quality and longevity of life, indeed a most daunting challenge. To be able to meaningfully meet the last of the above expectations, it is nec- sary to provide the practitioner of medicine with diagnostic and predictive capabilities that science will accord when its seemingly disparate parts are melded together and brought to bear on the problems that they face. The development of interdisciplinary activities involving the various basic sciences-biology, physics, chemistry, and mathematics, and their applied counterparts, engineering and technology-is a necessary key to unlocking the mysteries of medicine, which at the moment is a curious admixture of art, craft, and science. Signi?cant strides have been taken during the past decades for putting intoplaceamethodologythattakesintoaccounttheinterplayofthevarious basic sciences. Considerable progress has been made in understanding the role that mechanics has to play in the development of medical procedures. Thiscollectionofsurveyarticlesaddressestheroleofmechanicswithregard to advances in the medical sciences. In particular, these survey articles bring to one's attention the central role played by mathematical modeling in general and the modeling of mechanical issues in particular that have a bearing on the biology, chemistry, and physics of living matter.
Table of Contents 6
Preface 14
Rheology of Living Materials 17
1.1 Introduction 17
1.1.1 What Is Rheology? 17
1.1.2 Importance of Rheology in the Study of Biological Materials 18
1.2 Rheological Models 19
1.2.1 One-Dimensional Models 19
1.2.2 Three-Dimensional Models 22
1.3 Biological Materials 25
1.3.1 Cells 25
1.3.2 Tissues 26
1.4 Measurements of Rheological Properties of Cells and Tissues 27
1.4.1 Microrheology 27
1.4.2 Macroscopic Tests 31
1.5 Applications of Rheological Models 34
1.5.1 Cells 34
1.5.2 Tissues 38
1.6 Conclusions 41
1.7 References 42
Biochemical and Biomechanical Aspects of Blood Flow 48
2.1 Introduction 49
2.2 Anatomy and Physiology Summary 50
2.2.1 Heart 50
2.2.2 Circulatory System 55
2.2.3 Hemodynamics 56
2.2.4 Lymphatics 57
2.2.5 Microcirculation 58
2.3 Blood 59
2.3.1 Blood Cells 60
2.3.2 Blood Rheology 63
2.4 Signaling and Cell Stress-Reacting Components 64
2.4.1 Cell Membrane 64
2.4.2 Endocytosis 68
2.4.3 Cell Cytoskeleton 68
2.4.4 Adhesion Molecules 70
2.4.5 Intercellular Junctions 71
2.4.6 Extracellular Matrix 73
2.4.7 Microrheology 74
2.5 Heart Wall 75
2.5.1 Cardiomyocyte 76
2.5.2 Nodal Cells 79
2.5.3 Excitation–Contraction Coupling 80
2.5.4 Vessel Wall 85
2.5.5 Vessel Wall Rheology 91
2.5.6 Growth, Repair, and Remodeling 92
2.6 Cardiovascular Diseases 98
2.6.1 Atheroma 98
2.6.2 Aneurism 100
2.7 Conclusion 101
2.8 References 103
Theoretical Modeling of Enlarging Intracranial Aneurysms 116
3.1 Introduction 117
3.2 Theoretical Framework 119
3.2.1 Kinematics 119
3.2.2 Fibrous Structure 121
3.2.3 Kinetics of G& R
3.2.4 Stress-Mediated G& R
3.2.5 Stress and Strain Energy Function 123
3.3 Simulations for Saccular Aneurysms 124
3.3.1 Method 124
3.3.2 Results 126
3.4 Simulations for Fusiform Aneurysms 128
3.4.1 Method 128
3.4.2 Results 130
3.5 Fluid–Solid Interaction 133
3.6 Discussion 136
3.7 References 137
Theoretical Modeling of Cyclically Loaded, Biodegradable Cylinders 139
4.1 Cardiovascular Stents 141
4.2 Biodegradable Stents 143
4.3 Degradation, Erosion, and Elimination 147
4.4 Models of Degradation and Erosion 151
4.5 Model Description 153
4.6 Methods 158
4.7 Results 160
4.7.1 On the In.uence of the Load 163
4.7.2 On the In.uence of the Thickness of the Wall 166
4.7.3 On the Role of the Constant Governing the Mechanical Properties Reduction, ß 169
4.7.4 On the Parameter of the Mechanical Degradation Governing Equation, D(t) 170
4.7.5 On the Shape of D(t) 171
4.8 Discussion 172
4.9 Conclusions 178
4.10 References 179
Regulation of Hemostatic System Function by Biochemical and Mechanical Factors 192
5.1 Components of the Hemostatic System 193
5.1.1 Platelets 193
5.1.2 Coagulation Factors 196
5.1.3 Anticoagulant Factors 199
5.1.4 The Fibrinolytic System 200
5.2 Vascular Physiology in the Context of Hemostasis 200
5.2.1 Endothelial Regulation of Local Hemodynamics 201
5.2.2 Platelet–Endothelial Interactions 201
5.2.3 Endothelial Regulation of the Coagulation Cascade 203
5.3 Mechanics and E.ects on Hemostasis 204
5.3.1 Mechanical Properties of Blood and Clots 204
5.3.2 Hemodynamics 207
5.4 Developing Physiological Experimental Model Systems and Mathematical Models for Coagulation 210
5.5 Conclusion 211
5.6 References 212
Mechanical Properties of Human Mineralized Connective Tissues 224
6.1 Introduction 225
6.1.1 Mechanical Testing 225
6.1.2 Imaging 227
6.1.3 Structure–Property Relationship 227
6.1.4 Hierarchical Structures in Hard Tissue 228
6.1.5 Elastic Properties of Individual Trabeculae 229
6.1.6 Elastic Properties of Single Osteons 230
6.2 Trabecular Bone 232
6.2.1 Tibial Trabecular Bone 233
6.2.2 Trabecular Bone from the Vertebral Body 235
6.2.3 Trabecular Bone from the Femur 239
6.2.4 Trabecular Bone from the Mandible 241
6.2.5 Anisotropy in the Elastic Modulus of Trabecular Bone 241
6.2.6 Viscoelasticity of Trabecular Bone 243
6.3 Cortical Bone 244
6.3.1 Elastic Properties of Cortical Bone at a Macroscale Level 245
6.3.2 Yield and Failure Properties of Cortical Bone 247
6.3.3 Viscoelasticity of Cortical Bone 249
6.3.4 Fracture Mechanics 250
6.3.5 Fatigue of Cortical Bone 251
6.4 Dental Tissues 252
6.4.1 Elastic Properties 254
6.4.2 Ultimate Static Properties of Dentine 257
6.4.3 Viscoelastic Properties 258
6.4.4 Fracture Properties 259
6.4.5 Fatigue Properties 260
6.5 References 260
Mechanics in Tumor Growth 275
7.1 Introduction 275
7.2 Mechanics and Mechanotransduction in Tumor Growth 278
7.2.1 Cadherin Switch 278
7.2.2 Interaction with the Extracellular Matrix and Integrin Switch 282
7.2.3 Nutrient-Limited Growth and Tumor Structure 285
7.2.4 Angiogenic Switch 285
7.3 Multiphase Models 287
7.3.1 A Basic Triphasic Model: ECM, Tumor Cells, and Extracellular Liquid 288
7.4 Constitutive Equations 293
7.4.1 Elastic Fluid: An Example Describing Contact Inhibition of Growth 293
7.4.2 Viscous Fluid: An Example Showing Nutrient-Limited Growth 303
7.4.3 Evolving Natural Con.gurations in Tumor Growth 309
7.4.4 Viscoelasticity and Pseudo-Plasticity in Tumor Growth 317
7.5 Future Perspective 322
7.6 References 325
Inhomogeneities in Biological Membranes 334
8.1 Introduction 334
8.2 Bare Membranes 335
8.3 Inhomogeneous Membranes 340
8.4 Transmembrane Proteins 348
8.5 The Role of Thermal Fluctuations 356
8.6 Peripheral Proteins 360
8.7 Closing Question and Prospects 362
8.8 References 362
2 Biochemical and Biomechanical Aspects of Blood Flow (p. 33-34)
M. Thiriet
REO team
Laboratoire Jacques-Louis Lions, UMR CNRS 7598,
Universit´e Pierre et Marie Curie, F-75252 Paris cedex 05, and
INRIA, BP 105, F-78153 Le Chesnay Cedex.
Abstract. The blood vital functions are adaptative and strongly regulated. The various processes associated with the .owing blood involve multiple space and time scales. Biochemical and biomechanical aspects of the human blood circulation are indeed strongly coupled. The functioning of the heart, the transduction of mechanical stresses applied by the .owing blood on the endothelial and smooth muscle cells of the vessel wall, gives examples of the links between biochemistry and biomechanics in the physiology of the cardiovascular system and its regulation. The remodeling of the vessel of any site of the vasculature (blood vessels, heart) when the blood pressure increases, the angiogenesis, which occurs in tumors or which shunts a stenosed artery, illustrates pathophysiological processes. Moreover, focal wall pathologies, with the dysfunction of its biochemical machinery, such as lumen dilations (aneurisms) or narrowings (stenoses), are stress-dependent. This review is aimed at emphasizing the multidisciplinary aspects of investigations of multiple aspects of the blood flow.
2.1 Introduction
Biomechanics investigates the cardiovascular system by means of mechanical laws and principles. Biomechanical research related to the blood circulation is involved
1. In the motion of human beings, such as gait (blood supply, venous return in transiently compressed veins)
2. In organ rheology influenced by blood perfusion
3. In heat and mass transfer, especially in the context of mini-invasive therapy of tumors
4. Cell and tissue engineering
5. In the design of surgical repair and implantable medical devices
Macroscale biomechanical model of the cardiovascular system have been carried out with multiple goals:
1. Prediction
2. Development of pedagogical and medical tools
3. Computations of quantities inaccessible to measurements
4. Control
5. Optimization
In addition, macroscale simulations deal with subject-specific geometries, because of a high between-subject variability in anatomy, whatever the image-based approaches, either numerical and experimental methods, using stereolithography. The research indeed aims at developing computerassisted medical and surgical tools in order to learn, to explore, to plan, to guide, and to train to perform the tasks during interventional medicine and mini-invasive surgery. However, this last topic is beyond the goal of the present review.
Erscheint lt. Verlag | 31.12.2007 |
---|---|
Reihe/Serie | Modeling and Simulation in Science, Engineering and Technology | Modeling and Simulation in Science, Engineering and Technology |
Zusatzinfo | XVI, 358 p. 71 illus. |
Verlagsort | Boston |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik |
Medizin / Pharmazie ► Pflege | |
Medizin / Pharmazie ► Physiotherapie / Ergotherapie ► Orthopädie | |
Naturwissenschaften ► Biologie | |
Technik ► Medizintechnik | |
Schlagworte | biodegradable tissues • Biology • Biomechanics • Biomedical Applications • biomedical engineer • biomedical engineering • biomedicine • blood flow • growth of biological tissues • hemostatic system function • Intracranial Aneurysms • Mathematical Modeling • mechanical properties of living materials • modeling of natural tissue substitutions • Stent • tissue • tumor growth • vascular mechanics |
ISBN-10 | 0-8176-4411-3 / 0817644113 |
ISBN-13 | 978-0-8176-4411-6 / 9780817644116 |
Haben Sie eine Frage zum Produkt? |
Größe: 3,7 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich