System Theory, the Schur Algorithm and Multidimensional Analysis (eBook)
IX, 322 Seiten
Springer Basel (Verlag)
978-3-7643-8137-0 (ISBN)
This volume contains six peer-refereed articles written on the occasion of the workshop Operator theory, system theory and scattering theory: multidimensional generalizations and related topics, held at the Department of Mathematics of the Ben-Gurion University of the Negev in June, 2005. The book will interest a wide audience of pure and applied mathematicians, electrical engineers and theoretical physicists.
Contents 7
Editorial Introduction 8
The Transformation of Issai Schur and Related Topics in an Inde.nite Setting 11
1. Introduction 13
2. Kernels, classes of functions, and reproducing kernel Pontryagin spaces 25
3. Some classes of rational matrix functions 35
4. Pick matrices 51
5. Generalized Schur functions: 61
6. Generalized Schur functions: 75
7. Generalized Nevanlinna functions: 80
8. Generalized Nevanlinna functions with asymptotic at 92
References 101
A Truncated Matricial Moment Problem on a Finite Interval. The Case of an Odd Number of Prescribed Moments 109
1. Notation and preliminaries 111
2. Main algebraic identities 116
3. From the moment problem to the system of fundamental matrix inequalities of Potapov-type 119
4. From the system of fundamental matrix inequalities to the moment problem 125
On the Irreducibility of a Class of Homogeneous Operators 175
1. Introduction 175
2. Reproducing kernels and the Cowen-Douglas class 178
3. Multiplier representations 186
4. Irreducibility 189
5. Homogeneity of the operator M(a,ß) 198
6. The case of the tri-disc D3 205
Canonical Forms for Symmetric and Skewsymmetric Quaternionic Matrix Pencils 209
1. Introduction 209
2. Algebra of quaternions 212
3. Quaternionic linear algebra 216
4. Canonical forms of symmetric matrices 221
5. Matrix polynomials with quaternionic coe.cients 225
6. The Kronecker form 229
7. Canonical forms for symmetric matrix pencils 235
Algorithms to Solve Hierarchically Semi-separable Systems 265
1. Introduction 265
2. Hierarchical semi-separable systems 268
3. Matrix operations based on HSS representation 271
4. Explicit ULV factorization 285
5. Inverse of triangular HSS matrix 290
6. Ancillary operations 293
7. Complexity analysis 297
8. Connection between SSS, HSS and the time varying notation 298
9. Final remarks 303
References 303
Unbounded Normal Algebras and Spaces of Fractions 305
1. Introduction 305
2. Spaces of fractions 307
3. Spaces of fractions of continuous functions 311
4. Normal algebras 317
5. Normal extensions 325
References 331
A Truncated Matricial Moment Problem on a Finite Interval. The Case of an Odd Number of Prescribed Moments (p. 99-100)
Abdon E. Choque Rivero, Yuriy M. Dyukarev, Bernd Fritzsche and Bernd Kirstein
Abstract. The main goal of this paper is to study the truncated matricial moment problem on a .nite closed interval in the case of an odd number of prescribed moments by using of the FMI method of V.P. Potapov. The solvability of this problem is characterized by the fact that two block Hankel matrices built from the data of the problem are nonnegative Hermitian (Theorem 1.3). An essential step to solve the problem under consideration is to derive an e.ective coupling identity between both block Hankel matrices (Proposition 2.5). In the case that these Hankel matrices are both positive Hermitian we parametrize the set of solutions via a linear fractional transformation the generating matrix-valued function of which is a matrix polynomial whereas the set of parameters consists of distinguished pairs of meromorphic matrix-valued functions.
Mathematics Subject Classification (2000). Primary 44A60, 47A57, 30E05. Keywords. Matricial moment problem, system of fundamental matrix inequalities of Potapov-type, Stieltjes transform.
0. Introduction
This paper continues the authors’ investigations on the truncated matricial moment problem on a .nite closed interval of the real axis. The scalar version of this problem was treated by M.G. Krein (see [K], [KN, Chapter III]) by di.erent methods. A closer look at this work shows that the cases of an even or odd number of prescribed moments were handled separately. These cases turned out to be intimately related with di.erent classes of functions holomorphic outside the .xed interval [a, b].
The same situation can be met in the matricial version of the moment problem under consideration. After studying the case of an even number of prescribed moments in [CDFK], we handle in this paper the case that the number of prescribed moments is odd. It is not quite unexpected that there are several features which are common to our treatment of both cases. This concern particularly our basic strategy. As in [CDFK] we will use V.P. Potapov’s so-called Fundamental Matrix Inequality (FMI) approach in combination with L.A. Sakhnovich’s method of operator identities. (According to applications of V.P. Potapov’s approach to matrix versions of classical moment and interpolation problems we refer, e.g., to the papers Dubovoj [Du], Dyukarev/Katsnelson [DK], Dyukarev [Dy1], Golinskii [G1], [G2], Katsnelson [Ka1]–[Ka3], Kovalishina [Ko1], [Ko2]. Concerning the operator identity method, e.g., the works [IS], [S1], [S2], [BS], and [AB] are mentioned. Roughly speaking, at a first view the comparison between the even and odd cases shows that the principal steps are similar whereas the detailed realizations of these steps are rather different. More precisely, the odd case turned out to be much more diffiult. Some reasons for this will be listed in the following more concrete description of the contents of this paper. Similarly as in [CDFK], we will again meet the situation that our matrix moment problem has solutions if and only if two block Hankel matrices built from the given data are nonnegative Hermitian (see Theorem 1.3). Each of these block Hankel matrices satis.es a certain Ljapunov type identity (see Proposition 2.1). An essential point in the paper is to find an effective algebraic coupling between both block Hankel matrices. The desired coupling identity will be realized in Proposition 2.5. The comparison with the analogous coupling identity in the even case (see [CDFK, Proposition 2.2]) shows that the coupling identity in Proposition 2.5 is by far more complicated. This is caused by the fact that in contrast with [CDFK] now two block Hankel matrices of di.erent sizes and much more involved structure have to be coupled. A first main result (see Theorem 1.2) indicates that (after Stieltjes transform) the original matrix moment problem is equivalent to a system of two fundamental matrix inequalities (FMI) of Potapov type. Our proof of Theorem 1.2 is completely di.erent from the proof of the corresponding result in the even case (see [CDFK, Theorem 1.2]). Whereas the proof of Theorem 1.2 in [CDFK] is mainly based on an appropriate application of generalized inversion formula of Stieltjes-Perron type, in this paper we prefer a much more algebraically orientated approach. Hereby, in particular Lemma 4.5 should be mentioned. It occupies a key role in the proof of Theorem 1.2.
Erscheint lt. Verlag | 28.6.2007 |
---|---|
Reihe/Serie | Operator Theory: Advances and Applications | Operator Theory: Advances and Applications |
Zusatzinfo | IX, 322 p. |
Verlagsort | Basel |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | Analysis • Calculus • operator theory • scattering • System Theory |
ISBN-10 | 3-7643-8137-X / 376438137X |
ISBN-13 | 978-3-7643-8137-0 / 9783764381370 |
Haben Sie eine Frage zum Produkt? |
Größe: 3,1 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich