Black-Box Models of Computation in Cryptology
Vieweg & Teubner (Verlag)
978-3-8348-1989-5 (ISBN)
Generic group algorithms solve computational problems defined over algebraic groups without exploiting properties of a particular representation of group elements. This is modeled by treating the group as a black-box. The fact that a computational problem cannot be solved by a reasonably restricted class of algorithms may be seen as support towards the conjecture that the problem is also hard in the classical Turing machine model. Moreover, a lower complexity bound for certain algorithms is a helpful insight for the search for cryptanalytic algorithms.
Tibor Jager addresses several fundamental questions concerning algebraic black-box models of computation: Are the generic group model and its variants a reasonable abstraction? What are the limitations of these models? Can we relax these models to bring them closer to the reality?
Dr. Tibor Jager completed his doctoral thesis at the Horst Görtz Institute for IT Security at Ruhr-Universität Bochum under the supervision of Prof. Dr. Jörg Schwenk. He is now a postdoctoral researcher at the Karlsruhe Institute of Technology.
Black-box models of computation.- The Black-Box Ring Extraction problem.- Analysis of cryptographic assumptions in the Generic Ring Model.- Semi-generic groups.
Erscheint lt. Verlag | 22.3.2012 |
---|---|
Zusatzinfo | XII, 86 p. |
Verlagsort | Wiesbaden |
Sprache | englisch |
Maße | 148 x 210 mm |
Gewicht | 142 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Schlagworte | Black-Box Models of Computation • Computational Complexity • Computational Number Theory and Algebra • Cryptographic Hardness Assumptions • Generic Group Model • Kryptographie / Kryptologie; Handbuch/Lehrbuch |
ISBN-10 | 3-8348-1989-1 / 3834819891 |
ISBN-13 | 978-3-8348-1989-5 / 9783834819895 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich