Algebra for Symbolic Computation
Seiten
This book deals with several topics in algebra useful for computer science applications and the symbolic treatment of algebraic problems, pointing out and discussing their algorithmic nature. The topics covered range from classical results such as the Euclidean algorithm, the Chinese remainder theorem, and polynomial interpolation, to p-adic expansions of rational and algebraic numbers and rational functions, to reach the problem of the polynomial factorisation, especially via Berlekamp’s method, and the discrete Fourier transform. Basic algebra concepts are revised in a form suited for implementation on a computer algebra system.
The Euclidean algorithm, the Chinese remainder theorem and interpolation.- p-adic series expansion.- The resultant.- Factorisation of polynomials.- The discrete Fourier transform.
Erscheint lt. Verlag | 16.3.2012 |
---|---|
Reihe/Serie | La Matematica per il 3+2 | UNITEXT |
Zusatzinfo | VIII, 180 p. |
Verlagsort | Milan |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Mathematik / Informatik ► Mathematik ► Algebra | |
Schlagworte | Algebra • algorithms • Computer |
ISBN-10 | 88-470-2396-3 / 8847023963 |
ISBN-13 | 978-88-470-2396-3 / 9788847023963 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Eine Einführung in die Systemtheorie
Buch | Softcover (2022)
UTB (Verlag)
CHF 34,95
was jeder über Informatik wissen sollte
Buch (2024)
Springer Vieweg (Verlag)
CHF 53,15