Stirling Convertor Regenerators
Crc Press Inc (Verlag)
978-1-4398-3006-2 (ISBN)
Apply NASA Experience & Experimentation
Intrigued by its special potential to improve energy generation, NASA has been working on Stirling technology since 1980—first for automotive applications, and later for use in generating auxiliary power during space missions. Now, after three decades of development, the Department of Energy and NASA and its contractors have developed a high-efficiency Stirling radioisotope generator (SRG), and NASA plans to launch such a Stirling engine/alternator for use in deep space.
With contributions from top experts in their fields, this reference offers a rare insider’s perspective that can greatly benefit engineers, scientists, and even students who are currently working in R&D for Stirling machines, as well as other burgeoning areas of alternative power generation—particularly solar and wind technologies. This book is a significant resource for anyone working on application of porous materials in filters, catalytic convertors, thermal energy storage, electronic cooling, and more.
Mounir Ibrahim is professor of mechanical engineering at Cleveland State University (CSU), Ohio. Ibrahim has been involved in research on fluid flow and heat transfer in different areas and applications, including heat transfer in gas turbines, gas turbine combustors, Stirling engines, and Stirling regenerator design using microfacbrication techniques, to name a few. He has more than 35 years of administrative, academic, research, and industrial experience. Ibrahim is a Fellow of the American Society of Mechanical Engineers (ASME) and Associate Fellow of the American Institute of Aeronautics and Astronautics (AIAA). He has been the chair of the ASME K-14 (Heat Transfer in Gas Turbines) Committee (July 2006 to June 2008). He also chaired the Mechanical Engineering Department at CSU from March 1998 to June 2002. He was a visiting scholar at Oxford University in 2008, and at the University of Minnesota, Minneapolis, in 2002. He has been awarded more than $5 million externally funded research and has supervised more than 60 masters and doctoral students. He has published more than 100 publications in prestigious journals and conference proceedings. Ibrahim has two patents: "High-Temperature, Non-Catalytic, Infrared Heater," U.S. Patent #6368102 and U.S. Patent #6612835. Roy Tew was an analytical research engineer for more than 46 years at the National Aeronautics and Space Administration (NASA) Glenn Research Center. He worked on space-power projects, with particular emphasis on Stirling power-convertor analysis, until his retirement in January 2009. In these areas, he also acted as grant and contract monitor for efforts including research into Stirling thermodynamic loss understanding, Stirling regenerator research and development, and development of Stirling multidimensional modeling codes. While employed at NASA, Tew was an author or coauthor on 29 NASA reports and other published papers. He earned degrees in physics (B.S. from the University of Alabama), engineering science (M.S. from Toledo University, Ohio), and mechanical engineering (Dr.Eng. from Cleveland State University). He is a member of the American Society of Mechanical Engineers (ASME) and the American Institute of Aeronautics and Astronautics (AIAA). He was an Ohio Registered Professional Engineer until he let his license expire after retirement. Since retirement, Dr. Tew has been working with Mounir Ibrahim of Cleveland State University to prepare this book. During the fall semester of 2010, he taught a graduate course in energy conversion at Cleveland State University (his first experience in teaching a course). Although retired from NASA Glenn, he currently works there as a Distinguished Research Associate, a part-time, volunteer position.
Introduction. Unsteady Flow and Heat Transfer Theory. Correlations for Steady/Unsteady Fluid Flow and Heat Transfer. Fundamentals of Operation and Types of Stirling Devices, with Descriptions of Some Sample Devices (Including Power and Cooling Levels). Types of Stirling Engine Regenerators. Random-Fiber Regenerators—Actual Scale. Random-Fiber Regenerator—Large Scale. Segmented-Involute-Foil Regenerator—Actual Scale. Segmented-Involute-Foil Regenerator—Large-Scale (Experiments, Analysis, and Computational Fluid Dynamics). Mesh Sheets and Other Regenerator Matrices. Applications Other Than Stirling Engines. Summary and Conclusions. Future Work. Appendices. Nomenclature.
Zusatzinfo | 88 Tables, black and white; 285 Illustrations, black and white |
---|---|
Verlagsort | Bosa Roca |
Sprache | englisch |
Maße | 156 x 234 mm |
Gewicht | 816 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Angewandte Mathematik |
Naturwissenschaften ► Physik / Astronomie ► Thermodynamik | |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Umwelttechnik / Biotechnologie | |
ISBN-10 | 1-4398-3006-1 / 1439830061 |
ISBN-13 | 978-1-4398-3006-2 / 9781439830062 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich