Lineare Algebra und analytische Geometrie
Vieweg & Teubner (Verlag)
978-3-528-08584-1 (ISBN)
0 Aus der Algebra.- 0.1 Gruppen und Untergruppen.- 0.2 Homomorphe Abbildungen und Faktorgruppen.- 0.3 Restklassen ganzer Zahlen.- 0.4 Ringe und Körper.- 1 Vektorräume.- 1.1 Grundlagen.- 1.2 Cartesische Produkte und Summen.- 1.3 Dualität.- 1.4 Quotientenräume und Codimension.- 1.5 Normierte Vektorräume.- 2 Feinstruktur spezieller Endomorphismen euklidischer Vektorräume.- 2.1 Hilfsmittel.- 2.2 Symmetrische Endomorphismen.- 2.3 Isometrische Endomorphismen.- 2.4 Normale Endomorphismen.- 3 Komplexe Vektorräume.- 3.1 Komplexe und reelle Struktur.- 3.2 Der algebraische Fundamentalsatz in C.- 3.3 Anwendung auf die Jordansche Normalform.- 4 Multilineare Algebra.- 4.1 Multilineare Abbildungen und Multilinearformen.- 4.2 Tensorprodukt endlich dimensionaler Vektorräume.- 4.3 Tensoralgebra über einem endlich dimensionalen Vektorraum.- 4.4 Alternierende multilineare Abbildungen und Formen.- 4.5 Äußere Algebra über einem endlich dimensionalen Vektorraum.- 4.6 Darstellung von Untervektorräumen und Determinanten in der äußeren Algebra.- 5 Affine und euklidische Geometrie.- 5.1 Affine Geometrie.- 5.2 Affine Abbildungen.- 5.3 Euklidische Geometrie.- 6 Quadratische Hyperflächen in der affinen und euklidischen Geometrie.- 6.1 Definition und Darstellung von Quadriken.- 6.2 Schnitt mit Geraden.- 6.3 Affine Quadriktypen.- 6.4 Euklidische Quadriktypen.- 7 Projektive Geometrie.- 7.1 Motivierung.- 7.2 Präzise Definitionen und grundlegende Begriffe.- 7.3 Das Dualitätsprinzip.- 7.4 Homogene Koordinaten und projektive Bezugssysteme.- 7.5 Das Doppelverhältnis.- 7.6 Projektive Abbildungen.- 7.7 Quadriken in der Projektivgeometrie.- 7.8 Zusammenhang mit der Affingeometrie.- Literaturhinweise.- Wichtige Symbole.
Erscheint lt. Verlag | 1.1.1985 |
---|---|
Zusatzinfo | 269 S. |
Verlagsort | Wiesbaden |
Sprache | deutsch |
Maße | 170 x 244 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Schlagworte | Algebra • Analysis • Beweis • Determinanten • Geometrie • Koordinaten • lineare Abbildung • Lineare Algebra • Mathematik • matrix theory • Morphismus • Multilineare Algebra • Vektorräume |
ISBN-10 | 3-528-08584-3 / 3528085843 |
ISBN-13 | 978-3-528-08584-1 / 9783528085841 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich