Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Modular Forms and Fermat's Last Theorem -

Modular Forms and Fermat's Last Theorem

Buch | Hardcover
601 Seiten
2000 | 1997. Corr. 2nd Printing ed.
Springer-Verlag New York Inc.
978-0-387-94609-2 (ISBN)
CHF 74,80 inkl. MwSt
  • Keine Verlagsinformationen verfügbar
  • Artikel merken
The book focuses on two major topics: Andrew Wiles' recent proof of the Taniyama-Shimura-Weil conjecture for semistable elliptic curves; and the earlier works of Frey, Serre, Ribet showing that Wiles' Theorem would complete the proof of Fermat's Last Theorem.
This volume contains expanded versions of lectures given at an instructional conference on number theory and arithmetic geometry held August 9 through 18, 1995 at Boston University. The purpose of the conference, and of this book, is to introduce and explain the many ideas and techniques used by Wiles in his proof that every (semi- stable) elliptic curve over Q is modular, and to explain how Wiles' result can be combined with Ribet's theorem and ideas of Frey and Serre to show, at long last, that Fermat's Last Theorem is true. Contributors to this volume include: B. Conrad, H. Darmon, E. de Shalit, B. de Smit, F. Diamond, S.J. Edixhoven, G. Frey, S. Gelbart, K. Kramer, H.W. Lenstra, Jr., B. Mazur, K. Ribet, D.E. Rohrlich, M. Rosen, K. Rubin, R. Schoof, A. Silverberg, J.H. Silverman, P. Stevenhagen, G. Stevens, J. Tate, J. Tilouine, and L. Washington. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions, modular curves, Galois cohomology, and finite group schemes.
Representation theory, which lies at the core of Wiles' proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serre's conjectures, Galois deformations, universal deformation rings, Hecke algebras, complete intersections and more, as the reader is led step-by-step through Wiles' proof. In recognition of the historical significance of Fermat's Last Theorem, the volume concludes by looking both forward and backward in time, reflecting on the history of the problem, while placing Wiles' theorem into a more general Diophantine context suggesting future applications. Students and professional mathematicians alike will find this volume to be an indispensable

Preface * Contributors * Schedule of Lectures * Introduction * An Overview of the Proof of Fermat's Last Theorem * A Survey of the Arithmetic Theory of Elliptic Curves * Modular Curves, Hecke Correspondences, and L-Functions * Galois Cohomology * Finite Flat Group Schemes * Three Lectures on the Modularity of PE.3 and the Langlands Reciprocity Conjecture * Serre's Conjectures * An Introduction to the Deformation Theory of Galois Representations * Explicit Construction of Universal Deformation Rings * Hecke Algebras and the Gorenstein Property * Criteria for Complete Intersections * l-adic Modular Deformations and Wiles's "Main Conjecture" * The Flat Deformation Functor * Hecke Rings and Universal Deformation Rings * Explicit Families of Elliptic Curves with Prescribed Mod N Representations * Modularity of Mod 5 Representations * An Extension of Wiles' Results * Appendix to Chapter 17: Classification of PE.1 by the j Invariant of E * Class Field Theory and the First Case of Fermat's Last Theorem * Remarks on the History of Fermat's Last Theorem 1844 to 1984 * On Ternary Equations of Fermat Type and Relations with Elliptic Curves * Wiles' Theorem and the Arithmetic of Elliptic Curves.

Erscheint lt. Verlag 14.1.2000
Zusatzinfo 15 figures
Verlagsort New York, NY
Sprache englisch
Einbandart gebunden
Themenwelt Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
ISBN-10 0-387-94609-8 / 0387946098
ISBN-13 978-0-387-94609-2 / 9780387946092
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Sieben ausgewählte Themenstellungen

von Hartmut Menzer; Ingo Althöfer

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 89,95
unlock your imagination with the narrative of numbers

von Dave Kester; Mikaela Ashcroft

Buch | Softcover (2024)
Advantage Media Group (Verlag)
CHF 27,90
Seltsame Mathematik - Enigmatische Zahlen - Zahlenzauber

von Klaus Scharff

Buch | Softcover (2024)
BoD – Books on Demand (Verlag)
CHF 27,95