Statistical Applications of Jordan Algebras
Springer-Verlag New York Inc.
9780387943411 (ISBN)
1 Introduction.- 2 Jordan Algebras and the Mixed Linear Model.- 2.1 Introductio.- 2.2 Square Matrices and Jordan Algebra.- 2.3 Idempotents and Identity Element.- 2.4 Equivalent Definitions for a Jordan Algebr.- 2.5 Jordan Algebras Derived from Real Symmetric Matrice.- 2.6 The Algebraic Study of Random Quadratic Form.- 2.7 The Statistical Study of Random Quadratic Form.- 2.8 Covariance Matrices Restricted to a Convex Spac.- 2.9 Applications to the General Linear Mixed Mode.- 2.10 A Concluding Exampl.- 3 Further Technical Results on Jordan Algebras.- 3.0 Outline of this Chapte.- 3.1 The JNW Theore.- 3.2 The Classes of Simple, Formally Real, Special Jordan Algebra.- 3.3 The Jordan and Associative Closures of Subsets of Sm.- 3.4 Subspaces of.- 3.5 Solutions of the Equation: sasbs 0.- 4 Jordan Algebras and the EM Algorithm.- 4.1 Introductio.- 4.2 The General Patterned Covariance Estimation Proble.- 4.3 Precise State of the Proble.- 4.4 The Key Idea of Rubin and Szatrowsk.- 4.5 Outline of the Proposed Metho.- 4.6 Preliminary Result.- 4.7 Further Details of the Proposed Metho.- 4.8 Estimation in the Presence of Missing Dat.- 4.9 Some Conclusions about the General Solutio.- 4.10 Special Cases of the Covariance Matrix Estimation Problem: Zero Constraint.- 4.11 Embeddings for Constant Diagonal Symmetric Matrice.- 4.12 Proof of the Embedding Problem for Sym(m)c.- 4.13 The Question of Nuisance Parameter.
| Reihe/Serie | Lecture Notes in Statistics ; 91 |
|---|---|
| Zusatzinfo | VII, 102 p. |
| Verlagsort | New York, NY |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
| Mathematik / Informatik ► Mathematik ► Statistik | |
| Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
| ISBN-13 | 9780387943411 / 9780387943411 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich