Markov Random Field Modeling in Image Analysis
Seiten
2010
|
Softcover reprint of hardcover 3rd ed. 2009
Springer London Ltd (Verlag)
978-1-84996-767-9 (ISBN)
Springer London Ltd (Verlag)
978-1-84996-767-9 (ISBN)
Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation. Various vision models are presented in a unified framework, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation.
Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation. It enables us to develop optimal vision algorithms systematically when used with optimization principles. This book presents a comprehensive study on the use of MRFs for solving computer vision problems. Various vision models are presented in a unified framework, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation. This third edition includes the most recent advances and has new and expanded sections on topics such as: Bayesian Network; Discriminative Random Fields; Strong Random Fields; Spatial-Temporal Models; Learning MRF for Classification. This book is an excellent reference for researchers working in computer vision, image processing, statistical pattern recognition and applications of MRFs. It is also suitable as a text for advanced courses in these areas.
Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation. It enables us to develop optimal vision algorithms systematically when used with optimization principles. This book presents a comprehensive study on the use of MRFs for solving computer vision problems. Various vision models are presented in a unified framework, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation. This third edition includes the most recent advances and has new and expanded sections on topics such as: Bayesian Network; Discriminative Random Fields; Strong Random Fields; Spatial-Temporal Models; Learning MRF for Classification. This book is an excellent reference for researchers working in computer vision, image processing, statistical pattern recognition and applications of MRFs. It is also suitable as a text for advanced courses in these areas.
Mathematical MRF Models.- Low-Level MRF Models.- High-Level MRF Models.- Discontinuities in MRF#x0027;s.- MRF Model with Robust Statistics.- MRF Parameter Estimation.- Parameter Estimation in Optimal Object Recognition.- Minimization – Local Methods.- Minimization – Global Methods.
Reihe/Serie | Advances in Pattern Recognition |
---|---|
Zusatzinfo | 111 Illustrations, black and white; XXII, 362 p. 111 illus. |
Verlagsort | England |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Informatik ► Grafik / Design ► Digitale Bildverarbeitung |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Mathematik / Informatik ► Mathematik | |
ISBN-10 | 1-84996-767-9 / 1849967679 |
ISBN-13 | 978-1-84996-767-9 / 9781849967679 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Modelle für 3D-Druck und CNC entwerfen
Buch | Softcover (2022)
dpunkt (Verlag)
CHF 48,85
alles zum Drucken, Scannen, Modellieren
Buch | Softcover (2024)
Markt + Technik Verlag
CHF 34,90