Complex Abelian Varieties and Theta Functions
Springer Berlin (Verlag)
978-3-540-53168-5 (ISBN)
1. Complex Tori.-
1.1 The Definition of Complex Tori.-
1.2 Hermitian Algebra.-
1.3 The Invertible Sheaves on a Complex Torus.-
1.4 The Structure of Pic(V/L).-
1.5 Translating Invertible Sheaves.- 2. The Existence of Sections of Sheaves.-
2.1 The Sections of Invertible Sheaves (Part I).-
2.2 The Sections of Invertible Sheaves (Part II).-
2.3 Abelian Varieties and Divisors.-
2.4 Projective Embeddings of Abelian Varieties.- 3. The Cohomology of Complex Tori.-
3.1 The Cohomology of a Real Torus.-
3.2 A Complex Torus as a Kähler Manifold.-
3.3 The Proof of the Appel-Humbert Theorem.-
3.4 A Vanishing Theorem for the Cohomology of Invertible Sheaves.-
3.5 The Final Determination of the Cohomology of an Invertible Sheaf.-
3.6 Examples.- 4. Groups Acting on Complete Linear Systems.-
4.1 Geometric Background.-
4.2 Representations of the Theta Group.-
4.3 The Hermitian Structure on ?(X, ?).-
4.4 The Isogeny Theorem up to a Constant.- 5. Theta Functions.-
5.1 Canonical Decompositions and Bases.-
5.2 The Theta Function.-
5.3 The Isogeny Theorem Absolutely.-
5.4 The Classical Notation.-
5.5 The Length of the Theta Functions.- 6. The Algebra of the Theta Functions.-
6.1 The Addition Formula.-
6.2 Multiplication.-
6.3 Some Bilinear Relations.-
6.4 General Relations.- 7. Moduli Spaces.-
7.1 Complex Structures on a Symplectic Space.-
7.2 Siegel Upper-half Space.-
7.3 Families of Abelian Varieties and Moduli Spaces.-
7.4 Families of Ample Sheaves on a Variable Abelian Variety.-
7.5 Group Actions on the Families of Sheaves.- 8. Modular Forms.-
8.1 The Definition.-
8.2 The Relationship Between ?'*NA and H in the Principally Polarized Case.-
8.3 Generators of the RelevantDiscrete Groups.-
8.4 The Relationship Between ?'*NA and H is General.-
8.5 Projective Embedding of Some Moduli Spaces.- 9. Mappings to Abelian Varieties.-
9.1 Integration.-
9.2 Complete Reducibility of Abelian Varieties.-
9.3 The Characteristic Polynomial of an Endomorphism.-
9.4 The Gauss Mapping.- 10. The Linear System |2D|.-
10.1 When |D} Has No Fixed Components.-
10.2 Projective Normality of |2D|.-
10.3 The Factorization Theorem.-
10.4 The General Case.-
10.5 Projective Normality of |2D| on X/{±}.- 11. Abelian Varieties Occurring in Nature.-
11.1 Hodge Structure.-
11.2 The Moduli of Polarized Hodge Structure.-
11.3 The Jacobian of a Riemann Surface.-
11.4 Picard and Albanese Varieties for a Kähler Manifold.- Informal Discussions of Immediate Sources.- References.
Erscheint lt. Verlag | 26.4.1991 |
---|---|
Reihe/Serie | Universitext |
Zusatzinfo | IX, 105 p. 1 illus. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 170 x 242 mm |
Gewicht | 216 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Schlagworte | Abelian varieties • abelian variety • Abelsche Mannigfaltigkeit • Abelsche Varietäten • differential equation • modular form • theta functions • Theta-Funktion • Thetafunktionen |
ISBN-10 | 3-540-53168-8 / 3540531688 |
ISBN-13 | 978-3-540-53168-5 / 9783540531685 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich