Maß und Kategorie
Springer Berlin (Verlag)
978-3-540-05393-4 (ISBN)
1: Maß und Kategorie auf der Zahlengeraden Abzählbare Mengen; Mengen von 1. Kategorie; Nullmengen; die Sätze von CANTOR, BAIRE und BOREL.- 2: Liouvillesche Zahlen Algebraische und transzendente Zahlen; Maß und Kategorie der Menge der Liouvilleschen Zahlen.- 3: Das Lebesguesche Maß im r-dimensionalen Raum Definitionen und grundlegende Eigenschaften; meßbare Mengen; der Dichtesatz von LEBESGUE.- 4: Die Bairesche Eigenschaft Analogie zwischen Bairescher Eigenschaft und Meßbarkeit; Eigenschaften regulär offener Mengen.- 5: Nicht-meßbare Mengen Vitalische Mengen; Bernsteinsche Mengen; Satz von ULAM; unerreichbare Kardinalzahlen; die Kontinuumhypothese.- 6: Das Spiel von BANACH-MAZUR Gewinnstrategien; Kategorie und lokale Kategorie; Spiele mit unbestimmtem Ausgang.- 7: Funktionen erster Klasse Oszillation; der Grenzwert einer Folge stetiger Funktionen; Integrierbarkeit im Riemannschen Sinne.- 8: Die Sätze von LUSIN und EGOROFF Stetigkeit meßbarer Funktionen; Stetigkeit von Funktionen mit der Baireschen Eigenschaft; gleichmäßige Konvergenz auf Teilmengen.- 9: Metrische und topologische Räume Definitionen; vollständige und topologisch vollständige Räume; der Kategorie-Satz von BAIRE.- 10: Beispiele für metrische Räume Metrik der gleichmäßigen Konvergenz und Integral-Metrik in Räumen stetiger Funktionen; integrierbare Funktionen; pseudo-metrische Räume; der Raum der meßbaren Mengen.- 11: Nirgends differenzierbare Funktionen Banach's Anwendung der Kategorie-Methode.- 12: Der Satz von ALEXANDROFF Ummetrisierung einer G?-Teilmenge; topologisch vollständige Teilräume.- 13: Transformation von linearen Mengen in Nullmengen Der Raum der Automorphismen eines Intervalls; der Effekt einer monotonen Substitution auf die Riemann-Integrierbarkeit; Äquivalenz vonNullmengen und Mengen von 1. Kategorie.- 14: Der Satz von FUBINI Meßbarkeit und Maß von Schnitten ebener meßbarer Mengen.- 15: Der Satz von KURATOWSKI-ULAM Schnitte von ebenen Mengen mit der Baireschen Eigenschaft; Produktmengen; Zurückführbarkeit auf den Satz von FUBINI vermöge einer Produkttransformation.- 16: Der Kategorie-Satz von BANACH Offene Mengen von 1. Kategorie oder vom Maß 0; das Lemma von MONTGOMERY; die Sätze von MARCZEWSKI und SIKORSKI; Kardinalzahlen vom Maß 0; Zerlegung in eine Nullmenge und in eine Menge von 1. Kategorie.- 17: Der Wiederkehrsatz von POINCARÉ Maß und Kategorie der Menge aller Punkte, die rekurrent unter einer konservativen Transformation sind; Anwendung auf dynamische Systeme.- 18: Transitive Transformationen Existenz transitiver Automorphismen des Einheitsquadrats; die Kategorie-Methode.- 19: Der Dualitätssatz von SIERPINSKI-ERDÖS Ähnlichkeiten zwischen der Familie der Nullmengen und der Familie der Mengen von 1. Kategorie; das Dualitätsprinzip.- 20: Beispiele für Dualität Eigenschaften Lusinscher Mengen und die dazu dualen Eigenschaften; Mengen, die fast-invariant unter Nullmengen- oder Kategorie-treuen Abbildungen sind.- 21: Das erweiterte Dualitätsprinzip Ein Gegenbeispiel; Produktmaß und Produkträume; das Null-Eins-Gesetz und sein Kategorie-Analogon.- 22: Kategorie-Maßräume Räume, in denen die Nullmengen mit den Mengen von 1. Kategorie identisch sind; Topologien, die von unteren Dichten erzeugt werden; die Lebesguesche Dichte-Topologie.
Erscheint lt. Verlag | 1.1.1971 |
---|---|
Reihe/Serie | Hochschultext |
Übersetzer | K. Schürger |
Zusatzinfo | VIII, 112 S. |
Verlagsort | Berlin |
Sprache | deutsch |
Maße | 178 x 254 mm |
Gewicht | 220 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Schlagworte | Algebra • Cantor • Funktion • Grenzwert • Invariante • Kategorie (Math.) • Kategorientheorie • Mass • Mass (Math.) • Morphismus • Stetigkeit • Topologie |
ISBN-10 | 3-540-05393-X / 354005393X |
ISBN-13 | 978-3-540-05393-4 / 9783540053934 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich