Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Elements of Applied Bifurcation Theory - Yuri Kuznetsov

Elements of Applied Bifurcation Theory

(Autor)

Buch | Softcover
632 Seiten
2010 | Softcover reprint of hardcover 3rd ed. 2004
Springer-Verlag New York Inc.
978-1-4419-1951-9 (ISBN)
CHF 239,65 inkl. MwSt
  • Titel erscheint in neuer Auflage
  • Artikel merken
Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.

1 Introduction to Dynamical Systems.- 2 Topological Equivalence, Bifurcations, and Structural Stability of Dynamical Systems.- 3 One-Parameter Bifurcations of Equilibria in Continuous-Time Dynamical Systems.- 4 One-Parameter Bifurcations of Fixed Points in Discrete-Time Dynamical Systems.- 5 Bifurcations of Equilibria and Periodic Orbits in n-Dimensional Dynamical Systems.- 6 Bifurcations of Orbits Homoclinic and Heteroclinic to Hyperbolic Equilibria.- 7 Other One-Parameter Bifurcations in Continuous-Time Dynamical Systems.- 8 Two-Parameter Bifurcations of Equilibria in Continuous-Time Dynamical Systems.- 9 Two-Parameter Bifurcations of Fixed Points in Discrete-Time Dynamical Systems.- 10 Numerical Analysis of Bifurcations.- A Basic Notions from Algebra, Analysis, and Geometry.- A.1 Algebra.- A.1.1 Matrices.- A.1.2 Vector spaces and linear transformations.- A.1.3 Eigenvectors and eigenvalues.- A.1.4 Invariant subspaces, generalized eigenvectors, and Jordan normal form.- A.1.5 Fredholm Alternative Theorem.- A.1.6 Groups.- A.2 Analysis.- A.2.1 Implicit and Inverse Function Theorems.- A.2.2 Taylor expansion.- A.2.3 Metric, normed, and other spaces.- A.3 Geometry.- A.3.1 Sets.- A.3.2 Maps.- A.3.3 Manifolds.- References.

Erscheint lt. Verlag 25.11.2010
Reihe/Serie Applied Mathematical Sciences ; 112
Zusatzinfo XXII, 632 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Gewicht 2010 g
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
ISBN-10 1-4419-1951-1 / 1441919511
ISBN-13 978-1-4419-1951-9 / 9781441919519
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
CHF 34,95
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
CHF 48,95