Lie Groups
Springer-Verlag New York Inc.
978-1-4419-1937-3 (ISBN)
- Titel ist leider vergriffen;
 
- Artikel merken
* Preface * Part I: Compact Groups: Haar Measure * Schur Orthogonality * Compact Operators * The Peter-Weyl Theorem * Part II: Lie Group Fundamentals: Lie Subgroups of GL(n, C) * Vector Fields * Left Invariant Vector Fields * The Exponential Map * Tensors and Universal Properties * The Universal Enveloping Algebra * Extension of Scalars * Representations of sl(2, C) * The Universal Cover * The Local Frobenius Theorem * Tori * Geodesics and Maximal Tori * Topological proof of Cartan's Theorem * The Weyl Integration Formula * The Root System * Examples of Root Systems * Abstract Weyl Groups * The Fundamental Group * Semisimple Compact Groups * Highest Weight Vectors * The Weyl Character Formula * Spin * Complexification * Coxeter Groups * The Iwasawa Decomposition * The Bruhat Decomposition * Symmetric Spaces * Relative Root Systems.* Embeddings of Lie Groups * Part III: Frobenius-Schur Duality: Mackey Theory * Characters of GL(n, C) * Duality between Sk and GL(n, C) * The Jacobi-Trudi Identity * Schur Polynomials and GL(n, C) * Schur Polynomials and Sk * Random Matrix Theory * Minors of Toeplitz Matrices * Branching Formulae and Tableaux * The Cauchy Identity * Unitary branching rules * The Involution Model for Sk * Some Symmetric Algebras * Gelfand Pairs * Hecke Algebras * Cohomology of Grassmannians * References
| Reihe/Serie | Graduate Texts in Mathematics ; 225 | 
|---|---|
| Zusatzinfo | 32 black & white illustrations, 1 black & white tables | 
| Verlagsort | New York, NY | 
| Sprache | englisch | 
| Maße | 156 x 234 mm | 
| Gewicht | 651 g | 
| Einbandart | Paperback | 
| Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra | 
| ISBN-10 | 1-4419-1937-6 / 1441919376 | 
| ISBN-13 | 978-1-4419-1937-3 / 9781441919373 | 
| Zustand | Neuware | 
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? | 
aus dem Bereich
 
            
