Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Heights of Polynomials and Entropy in Algebraic Dynamics - Graham Everest, Thomas Ward

Heights of Polynomials and Entropy in Algebraic Dynamics

Buch | Softcover
212 Seiten
2010 | Softcover reprint of hardcover 1st ed. 1999
Springer London Ltd (Verlag)
978-1-84996-854-6 (ISBN)
CHF 89,85 inkl. MwSt
Arithmetic geometry and algebraic dynamical systems are flourishing areas of mathematics. In arithmetic geome­ try 'height' measures arithmetical complexity of points on varieties, while in dynamical systems 'entropy' measures the orbit complexity of maps.
Arithmetic geometry and algebraic dynamical systems are flourishing areas of mathematics. Both subjects have highly technical aspects, yet both of­ fer a rich supply of down-to-earth examples. Both have much to gain from each other in techniques and, more importantly, as a means for posing (and sometimes solving) outstanding problems. It is unlikely that new graduate students will have the time or the energy to master both. This book is in­ tended as a starting point for either topic, but is in content no more than an invitation. We hope to show that a rich common vein of ideas permeates both areas, and hope that further exploration of this commonality will result. Central to both topics is a notion of complexity. In arithmetic geome­ try 'height' measures arithmetical complexity of points on varieties, while in dynamical systems 'entropy' measures the orbit complexity of maps. The con­ nections between these two notions in explicit examples lie at the heart of the book. The fundamental objects which appear in both settings are polynomi­ als, so we are concerned principally with heights of polynomials. By working with polynomials rather than algebraic numbers we avoid local heights and p-adic valuations.

1. Lehmer, Mahler and Jensen.- 2. Dynamical Systems.- 3. Mahler’s Measure in Many Variables.- 4. Higher-Dimensional Dynamical Systems.- 5. Elliptic Heights.- 6. The Elliptic Mahler Measure.- A. Algebra.- A.1 Algebraic Integers.- A.2 Integer Matrices.- A.3 Hilbert’s Nullstellensatz.- B. Analysis.- B.1 Stone-Weierstrass Theorem.- B.2 The Gelfand Transform.- C. Division Polynomials.- E.1 Lehmer Primes.- E.2 Elliptic Primes.- F. Exercises and Questions.- F.1 Hints for the Exercises.- F.2 List of Questions.- G. List of Notation.

Reihe/Serie Universitext
Zusatzinfo XII, 212 p.
Verlagsort England
Sprache englisch
Maße 210 x 279 mm
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Mathematik / Informatik Mathematik Geometrie / Topologie
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Naturwissenschaften Physik / Astronomie Mechanik
Naturwissenschaften Physik / Astronomie Thermodynamik
ISBN-10 1-84996-854-3 / 1849968543
ISBN-13 978-1-84996-854-6 / 9781849968546
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
CHF 48,95
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
CHF 34,95