Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Geometric and Analytic Number Theory - Edmund Hlawka, Johannes Schoißengeier, Rudolf Taschner

Geometric and Analytic Number Theory

Buch | Softcover
X, 238 Seiten
1991 | 1. Softcover reprint of the original 1st ed. 1991
Springer Berlin (Verlag)
978-3-540-52016-0 (ISBN)
CHF 149,75 inkl. MwSt
In the English edition, the chapter on the Geometry of Numbers has been enlarged to include the important findings of H. Lenstraj furthermore, tried and tested examples and exercises have been included. The translator, Prof. Charles Thomas, has solved the difficult problem of the German text into English in an admirable way. He deserves transferring our 'Unreserved praise and special thailks. Finally, we would like to express our gratitude to Springer-Verlag, for their commitment to the publication of this English edition, and for the special care taken in its production. Vienna, March 1991 E. Hlawka J. SchoiBengeier R. Taschner Preface to the German Edition We have set ourselves two aims with the present book on number theory. On the one hand for a reader who has studied elementary number theory, and who has knowledge of analytic geometry, differential and integral calculus, together with the elements of complex variable theory, we wish to introduce basic results from the areas of the geometry of numbers, diophantine ap proximation, prime number theory, and the asymptotic calculation of number theoretic functions. However on the other hand for the student who has al ready studied analytic number theory, we also present results and principles of proof, which until now have barely if at all appeared in text books.

Univ.-Prof. Dr. Rudolf Taschner, geboren 1953 in Ternitz, studierte an der Universität Wien Mathematik und Physik. 1977 begann er seine Arbeit an der Technischen Universität Wien, an der er nach einem Zwischenaufenthalt in Stanford bis heute als Professor tätig ist. Rudolf Taschner gründete und betreibt zusammen mit seiner Frau und Kollegen der TU Wien "math.space", einen Veranstaltungsort im Wiener MuseumsQuartier, der Mathematik als kulturelle Errungenschaft präsentiert und sowohl in Österreich als auch international größte Anerkennung als höchst innovative Einrichtung gefunden hat. 2004 wurde Rudolf Taschner zum "Wissenschaftler des Jahres" gewählt. Sein Bestseller "Zahl Zeit Zufall. Alles Erfindung" erhielt zahlreiche Auszeichnungen, sein im Herbst 2009 erschienenes Werk "Rechnen mit Gott und der Welt" wurde zum Buchliebling 2010 gewählt. 2011 erhielt er den Preis der Stadt Wien für Volksbildung.

1. The Dirichlet Approximation Theorem.- Dirichlet approximation theorem - Elementary number theory - Pell equation - Cantor series - Irrationality of ?(2) and ?(3) - multidimensional diophantine approximation - Siegel's lemma - Exercises on Chapter 1..- 2. The Kronecker Approximation Theorem.- Reduction modulo 1 - Comments on Kronecker's theorem - Linearly independent numbers - Estermann's proof - Uniform Distribution modulo 1 - Weyl's criterion - Fundamental equation of van der Corput - Main theorem of uniform distribution theory - Exercises on Chapter 2..- 3. Geometry of Numbers.- Lattices - Lattice constants - Figure lattices - Fundamental region - Minkowski's lattice point theorem - Minkowski's linear form theorem - Product theorem for homogeneous linear forms - Applications to diophantine approximation - Lagrange's theorem - the lattice?(i) - Sums of two squares - Blichfeldt's theorem - Minkowski's and Hlawka's theorem - Rogers' proof - Exercises on Chapter 3..- 4. Number Theoretic Functions.- Landau symbols - Estimates of number theoretic functions - Abel transformation - Euler's sum formula - Dirichlet divisor problem - Gauss circle problem - Square-free and k-free numbers - Vinogradov's lemma - Formal Dirichlet series - Mangoldt's function - Convergence of Dirichlet series - Convergence abscissa - Analytic continuation of the zeta- function - Landau's theorem - Exercises on Chapter 4..- 5. The Prime Number Theorem.- Elementary estimates - Chebyshev's theorem - Mertens' theorem - Euler's proof of the infinity of prime numbers - Tauberian theorem of Ingham and Newman - Simplified version of the Wiener-Ikehara theorem -Mertens' trick - Prime number theorem - The ?-function for number theory in ?(i) - Hecke's prime number theorem for ?(i) - Exercises on Chapter 5..- 6. Characters of Groups of Residues.- Structure of finite abelian groups - The character group - Dirichlet characters - Dirichlet L-series - Prime number theorem for arithmetic progressions - Gauss sums - Primitive characters - Theorem of Pólya and Vinogradov - Number of power residues - Estimate of the smallest primitive root - Quadratic reciprocity theorem - Quadratic Gauss sums - Sign of a Gauss sum - Exercises on Chapter 6..- 7. The Algorithm of Lenstra, Lenstra and Lovász.- Addenda.- Solutions for the Exercises.- Index of Names.- Index of Terms.

Erscheint lt. Verlag 2.8.1991
Reihe/Serie Universitext
Übersetzer Charles Thomas
Zusatzinfo X, 238 p.
Verlagsort Berlin
Sprache englisch
Maße 170 x 242 mm
Gewicht 430 g
Themenwelt Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Diophantine approximation • Diophantische Approximation • distribution of prime numbers • Geometrie der Zahlen • geometry of numbers • Number Theory • Prime • Prime number • Primzahlverteilung • Zahlentheorie
ISBN-10 3-540-52016-3 / 3540520163
ISBN-13 978-3-540-52016-0 / 9783540520160
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Sieben ausgewählte Themenstellungen

von Hartmut Menzer; Ingo Althöfer

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 89,95
unlock your imagination with the narrative of numbers

von Dave Kester; Mikaela Ashcroft

Buch | Softcover (2024)
Advantage Media Group (Verlag)
CHF 27,90
Seltsame Mathematik - Enigmatische Zahlen - Zahlenzauber

von Klaus Scharff

Buch | Softcover (2024)
BoD – Books on Demand (Verlag)
CHF 27,95