Mathematical Reflections
Springer-Verlag New York Inc.
978-0-387-94770-9 (ISBN)
1 Going Down the Drain.- 1.1 Constructions.- 1.2 Cobwebs.- 1.3 Consolidation.- 1.4 Fibonacci Strikes.- 1.5 Dénouement.- 2 A Far Nicer Arithmetic.- 2.1 General Background: What You Already Know.- 2.2 Some Special Moduli: Getting Ready for the Fun.- 2.3 Arithmetic mod p: Some Beautiful Mathematics.- 2.4 Arithmetic mod Non-primes: The Same But Different.- 2.5 Primes, Codes, and Security.- 2.6 Casting Out 9’s and 11’s: Tricks of the Trade.- 3 Fibonacci and Lucas Numbers.- 3.1 A Number Trick.- 3.2 The Explanation Begins.- 3.3 Divisibility Properties.- 3.4 The Number Trick Finally Explained.- 3.5 More About Divisibility.- 3.6 A Little Geometry!.- 4 Paper-Folding and Number Theory.- 4.1 Introduction: What You Can Do With—and Without—Euclidean Tools.- 4.2 Going Beyond Euclid: Folding 2-Period Regular Polygons.- 4.3 Folding Numbers.- 4.4 Some Mathematical Tidbits.- 4.5 General Folding Procedures.- 4.6 The Quasi-Order Theorem.- 4.7 Appendix: A Little Solid Geometry.- 5 Quilts and Other Real-World Decorative Geometry.- 5.1 Quilts.- 5.2 Variations.- 5.3 Round and Round.- 5.4 Up the Wall.- 6 Pascal, Euler, Triangles, Windmills.- 6.1 Introduction: A Chance to Experiment.- 6.2 The Binomial Theorem.- 6.3 The Pascal Triangle and Windmill.- 6.4 The Pascal Flower and the Generalized Star of David.- 6.5 Eulerian Numbers and Weighted Sums.- 6.6 Even Deeper Mysteries.- 7 Hair and Beyond.- 7.1 A Problem with Pigeons, and Related Ideas.- 7.2 The Biggest Number.- 7.3 The Big Infinity.- 7.4 Other Sets of Cardinality ?0.- 7.5 Schröder and Bernstein.- 7.6 Cardinal Arithmetic.- 7.7 Even More Infinities?.- 8 An Introduction to the Mathematics of Fractal Geometry.- 8.1 Introduction to the Introduction: What’s Different About Our Approach.- 8.2 Intuitive Notion of Self-Similarity.- 8.3The lént Map and the Logistic Map.- 8.4 Some More Sophisticated Material.- An Introduction to the Mathematics of Fractal Geometry.- 8.1 Introduction to the Introduction: What’s Different About Our Approach.- 8.2 Intuitive Notion of Self-Similarity.- 8.3 The tent Map and and the Logistic Map.- 8.4 Some more Sophisticated Material.- 9 Some of Our Own Reflections.- 9.1 General Principles.- 9.2 Specific Principles.- 9.3 Appendix: Principles of Mathematical Pedagogy.
Reihe/Serie | Undergraduate Texts in Mathematics |
---|---|
Zusatzinfo | XVI, 352 p. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 178 x 254 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Allgemeines / Lexika |
Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
ISBN-10 | 0-387-94770-1 / 0387947701 |
ISBN-13 | 978-0-387-94770-9 / 9780387947709 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich