Mathematik für Biologen
Springer Berlin (Verlag)
978-3-540-06236-3 (ISBN)
1. Mengen.- 2. Abbildungen.- 3. Folgen.- 4. Zahlen.- 5. Mengen und Folgen reeller Zahlen.- 6. Reihen.- 7. Stetigkeit reeller Funktionen.- 8. Differenzierbarkeit.- 9. Die Umkehrfunktion und ihre Ableitung.- 10. Mittelwertsätze und Taylorscher Satz.- 11. Funktionenfolgen-und reihen.- 12. Elementare Funktionen.- 13. Monotonie und Konvexität.- 14. Relative Extreme.- 15. Die Regeln von de l'Hospital.- 16. Integration.- 17. Integration und Differentiation.- 18. Berechnung von Integralen.- 19. Iterationen und Differenzengleichungen.- 20. Komplexe Zahlen.- 21. Polynome und rationale Funktionen.- 22. Lineare Räume.- 23. Lineare Abbildungen.- 24. Lineare Gleichungen und Determinanten.- 25. Eigenwertaufgaben.- 26. Mengen, Folgen und Funktionen im mehrdimensionalen Raum.- 27. Die Differentiation einer Funktion von mehreren Veränderlichen.- 28. Ausgleichsrechnung.- 29. Interpolation und Approximation.- 30. Iterationen in mehrdimensionalen Räumen.- 31. Ein Räuber-Beute-Modell mit getrennten Generationen.- 32. Das Hardy-Weinberg-Gesetz.- 33. Ein grundlegendes Selektionsmodell.- 34. Die Zunahme der mittleren Fitness.- 35. Die Entwicklung einer Population.- 36. Die Gleichgewichtszustände.- 37. Stabilität der Gleichgewichtszustände.- 38. Der Fall zweier Allele.- 39. Ein Beispiel einer Markoffschen Kette.- 40. Über laterale Inhibition.- 41. Gewöhnliche Differentialgleichungen.- 42. Einfach integrier bare Fälle.- 43. Die lineare Differentialgleichung.- 44. Das Richtungsfeld.- 45. Der Existenz- und Eindeutigkeitssatz.- 46. Numerische Methoden.- 47. Differentialgleichungen zweiter Ordnung.- 48. Differentialgleichungen höherer Ordnung.- 49. Systeme von Differentialgleichungen.- 50. Stationäre Zustände.- 51. Stationäre Zustände zweidimensionaler Systeme.- 52. Daskontinuierliche Räuber-Beute-Modell.- 53. Ein kontinuierliches Selektionsmodell.- 54. Die mittlere Fitness und die Gleichgewichtszustände der Population.- 55. Das Stabilitätsproblem.- 56. Der Fall zweier Allele.- 57. Das Hodgkin-Huxley-Nervenmodell.- 58. Laplace-Transformation.- 59. Differentialgleichungen mit verzögertem Argument.- 60. Zur Theorie der Epidemien.- 61. Die Wärmeleitungsgleichung.- 62. Mehrdimensionale Wärmeleitungsprobleme.- 63. Die Wellengleichung.- 64. Algebraische Strukturen.- 65. Wahrscheinlichkeitsräume.- 66. Einfache kombinatorische Betrachtungen.- 67. Bedingte Wahrscheinlichkeiten.- 68. Zufallsvariable.- 69. Verteilung und Verteilungsfunktion.- 70. Die Binomial-Verteilung.- 71. Die hypergeometrische Verteilung.- 72. Stetige Verteilungen.- 73. Die Poisson-Verteilung.- 74. Beziehungen zwischen den Verteilungen.- 75. Testen von Hypothesen.- 76. Der Rang-Test (Wilcoxon-Mann-Whitney-Test).- 77. Schätzen von Parametern.- Literatur.
Erscheint lt. Verlag | 22.2.1974 |
---|---|
Reihe/Serie | Heidelberger Taschenbücher |
Zusatzinfo | X, 234 S. |
Verlagsort | Berlin |
Sprache | deutsch |
Maße | 133 x 203 mm |
Gewicht | 282 g |
Themenwelt | Informatik ► Weitere Themen ► Bioinformatik |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Schlagworte | Mathematik • Mathematik; Handbuch/Lehrbuch (Biologie) |
ISBN-10 | 3-540-06236-X / 354006236X |
ISBN-13 | 978-3-540-06236-3 / 9783540062363 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich