Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations
Springer-Verlag New York Inc.
978-0-387-96729-5 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
Preface.- Acknowledgments.- 1 Presentation of the Approach and of the Main Results.- 2 The Transport of Finite-Dimensional Contact Elements.- 3 Spectral Blocking Property.- 4 Strong Squeezing Property.- 5 Cone Invariance Properties.- 6 Consequences Regarding the Global Attractor.- 7 Local Exponential Decay Toward Blocked Integral Surfaces.- 8 Exponential Decay of Volume Elements and the Dimension of the Global Attractor.- 9 Choice of the Initial Manifold.- 10 Construction of the Inertial Manifold.- 11 Lower Bound for the Exponential Rate of Convergence to the Attractor.- 12 Asymptotic Completeness: Preparation.- 13 Asymptotic Completeness: Proof of Theorem 12.1.- 14 Stability with Respect to Perturbations.- 15 Application: The Kuramoto—Sivashinsky Equation.- 16 Application: A Nonlocal Burgers Equation.- 17 Application: The Cahn—Hilliard Equation.- 18 Application: A Parabolic Equation in Two Space Variables.- 19 Application: The Chaffee—Infante Reaction—Diffusion Equation.- References.
Reihe/Serie | Applied Mathematical Sciences ; 70 |
---|---|
Zusatzinfo | X, 123 p. |
Verlagsort | New York, NY |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
ISBN-10 | 0-387-96729-X / 038796729X |
ISBN-13 | 978-0-387-96729-5 / 9780387967295 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich