Algebraic Geometry III
Complex Algebraic Varieties Algebraic Curves and Their Jacobians
Seiten
2010
|
1. Softcover reprint of the original 1st ed. 1998
Springer Berlin (Verlag)
978-3-642-08118-7 (ISBN)
Springer Berlin (Verlag)
978-3-642-08118-7 (ISBN)
Starting with the end of the seventeenth century, one of the most interesting directions in mathematics (attracting the attention as J. Bernoulli, Euler, Jacobi, Legendre, Abel, among others) has been the study of integrals of the form r dz l Aw(T) = -, TO W where w is an algebraic function of z. Such integrals are now called abelian. Let us examine the simplest instance of an abelian integral, one where w is defined by the polynomial equation (1) where the polynomial on the right hand side has no multiple roots. In this case the function Aw is called an elliptic integral. The value of Aw is determined up to mv + nv , where v and v are complex numbers, and m and n are 1 2 1 2 integers. The set of linear combinations mv+ nv forms a lattice H C C, and 1 2 so to each elliptic integral Aw we can associate the torus C/ H. 2 On the other hand, equation (1) defines a curve in the affine plane C = 2 2 {(z,w)}. Let us complete C2 to the projective plane lP' = lP' (C) by the addition of the "line at infinity", and let us also complete the curve defined 2 by equation (1). The result will be a nonsingular closed curve E C lP' (which can also be viewed as a Riemann surface). Such a curve is called an elliptic curve.
I. Complex Algebraic Varieties: Periods of Integrals and Hodge Structures.- II. Algebraic Curves and Their Jacobians.
Erscheint lt. Verlag | 1.12.2010 |
---|---|
Reihe/Serie | Encyclopaedia of Mathematical Sciences |
Co-Autor | V.S. Kulikov, P.F. Kurchanov, V.V. Shokurov |
Übersetzer | I. Rivin |
Zusatzinfo | VIII, 270 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 426 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Schlagworte | algebraic curves • Algebraic Varieties • algebraische Kurven • Analysis • complex algebraic varieties • differential equation • Hodgesche Struktur • Hodge structures • Jacobian varieties • Jacobischen Varietät • komplexe algebraische Varietät • Mathematical Physics • Sätze von • Torelli theorems |
ISBN-10 | 3-642-08118-5 / 3642081185 |
ISBN-13 | 978-3-642-08118-7 / 9783642081187 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Band 5: Hydraulik, Stromfadentheorie, Wellentheorie, Gasdynamik
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 83,90