Domain Decomposition Methods - Algorithms and Theory
Springer Berlin (Verlag)
978-3-642-05848-6 (ISBN)
Abstract Theory of Schwarz Methods.- Two-Level Overlapping Methods.- Substructuring Methods: Introduction.- Primal Iterative Substructuring Methods.- Neumann-Neumann and FETI Methods.- Spectral Element Methods.- Linear Elasticity.- Preconditioners for Saddle Point Problems.- Problems in H (div ; ?) and H (curl ; ?).- Indefinite and Nonsymmetric Problems.- Elliptic Problems and Sobolev Spaces.- Galerkin Approximations.- Solution of Algebraic Linear Systems.
From the reviews of the first edition:
"This book unifies the results from a number of papers by the authors and their coworkers over the past two decades, and complements them by new insights and some background. The distinguishing feature of this book is a comprehensive and rigorous treatment of convergence bounds based on the theory of infinite elements. ... The bibliography is quite complete for the fields covered ... . The book belongs on the desk of all specialists involved in domain decomposition and substructuring ... ." (Jan Mandel, Zentralblatt MATH, Vol. 1069, 2005)
Erscheint lt. Verlag | 19.10.2010 |
---|---|
Reihe/Serie | Springer Series in Computational Mathematics |
Zusatzinfo | XV, 450 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 696 g |
Themenwelt | Mathematik / Informatik ► Informatik ► Software Entwicklung |
Mathematik / Informatik ► Informatik ► Theorie / Studium | |
Mathematik / Informatik ► Mathematik ► Analysis | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Schlagworte | algorithms • domain decomposition • finite elements • linear algebra • partial differential equation • preconditioning • Sobolev Space • spectral elements • Statistics |
ISBN-10 | 3-642-05848-5 / 3642058485 |
ISBN-13 | 978-3-642-05848-6 / 9783642058486 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich