Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Nonarchimedean Functional Analysis - Peter Schneider

Nonarchimedean Functional Analysis

(Autor)

Buch | Softcover
VII, 156 Seiten
2010 | 1. Softcover reprint of hardcover 1st ed. 2002
Springer Berlin (Verlag)
978-3-642-07640-4 (ISBN)
CHF 127,30 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book grew out of a course which I gave during the winter term 1997/98 at the Universitat Munster. The course covered the material which here is presented in the first three chapters. The fourth more advanced chapter was added to give the reader a rather complete tour through all the important aspects of the theory of locally convex vector spaces over nonarchimedean fields. There is one serious restriction, though, which seemed inevitable to me in the interest of a clear presentation. In its deeper aspects the theory depends very much on the field being spherically complete or not. To give a drastic example, if the field is not spherically complete then there exist nonzero locally convex vector spaces which do not have a single nonzero continuous linear form. Although much progress has been made to overcome this problem a really nice and complete theory which to a large extent is analogous to classical functional analysis can only exist over spherically complete field8. I therefore allowed myself to restrict to this case whenever a conceptual clarity resulted. Although I hope that thi8 text will also be useful to the experts as a reference my own motivation for giving that course and writing this book was different. I had the reader in mind who wants to use locally convex vector spaces in the applications and needs a text to quickly gra8p this theory.

I. Foundations.- Nonarchimedean Fields; Seminorms; Normed Vector Spaces; Locally Convex Vector Spaces; Constructions and Examples; Spaces of Continuous Linear Maps; Completeness; Fréchet Spaces; the Dual Space. - II. The Structure of Banach Spaces.- Structure theorems; Non-Reflexivity.- III. Duality Theory.- C-Compact and Compactoid Submodules; Polarity; Admissible Topologies; Reflexivity; Compact Limits.- IV. Nuclear Maps and Spaces.- Topological Tensor Products; Completely Continuous Maps; Nuclear Spaces; Nuclear Maps; Traces; Fredholm Theory.- References.- Index, Notations.

From the reviews of the first edition:

"It is the first textbook seriously covering locally convex theory over K, so ... it is most welcome. ... the book is self-contained, complete with all proofs, and therefore attractive also to those who are not acquainted with the above area. ... The book is well-written, with care for details. Recommended." (W.H. Schikhof, Jahresbericht der Deutschen Mathematiker Vereinigung, Vol. 106 (1), 2004)

"The book under review is a self-contained text concerning the theory of locally convex spaces over non-Archimedean fields. ... The book is carefully written and incorporates for the first time results that have only appeared in papers. It will be a valuable reference work either for specialists or for non-specialists in the field." (Dinamérico P. Pombo, Jr., Mathematical Reviews, Issue 2003 a)

"Functional analysis over nonarchimedean fields has become an area of growing interest ... . In the present book the author gives a concise and clear account of this theory, carefully lays the foundations, and also develops the more advanced topics. ... This book gives a streamlined introduction for researchers and graduate students who want to apply these methods to other areas, and it would probably also provide a valuable reference source for researchers in the field." (Anton Deitmar, Bulletin of the London Mathematical Society, Vol. 34, 2002)

"The present book is a self-contained text which leads the reader through all the important aspects of the theory of locally convex vector spaces over nonarchimedean fields. ... The book gives a concise and clear account of this theory, it carefully lays the foundations and also develops the more advanced topics. Although the book will be a valuable reference work for experts in the field, it is mainly intended as streamlined but detailed introduction for researchers and graduate students ... ." (L'Enseignement Mathematique, Vol. 48 (1-2), 2002)

Erscheint lt. Verlag 9.12.2010
Reihe/Serie Springer Monographs in Mathematics
Zusatzinfo VII, 156 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 276 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Schlagworte Analysis • bounded mean oscillation • Calculus • Functional Analysis • locally convex vector space • nonarchimedean • Number Theory • p-adic
ISBN-10 3-642-07640-8 / 3642076408
ISBN-13 978-3-642-07640-4 / 9783642076404
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
CHF 109,95