Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Congruences for L-Functions - J. Urbanowicz, Kenneth S. Williams

Congruences for L-Functions

Buch | Softcover
256 Seiten
2010 | Softcover reprint of hardcover 1st ed. 2000
Springer (Verlag)
978-90-481-5490-6 (ISBN)
CHF 74,85 inkl. MwSt
In [Hardy and Williams, 1986] the authors exploited a very simple idea to obtain a linear congruence involving class numbers of imaginary quadratic fields modulo a certain power of 2. Their congruence provided a unified setting for many congruences proved previously by other authors using various means. The Hardy-Williams idea was as follows. Let d be the discriminant of a quadratic field. Suppose that d is odd and let d = PIP2· . . Pn be its unique decomposition into prime discriminants. Then, for any positive integer k coprime with d, the congruence holds trivially as each Legendre-Jacobi-Kronecker symbol (~) has the value + 1 or -1. Expanding this product gives ~ eld e:=l (mod4) where e runs through the positive and negative divisors of d and v (e) denotes the number of distinct prime factors of e. Summing this congruence for o < k < Idl/8, gcd(k, d) = 1, gives ~ (-It(e) ~ (~) =:O(mod2n). eld o

I. Short Character Sums.- II. Class Number Congruences.- III. Congruences between the Orders of K2-Groups.- IV Congruences among the Values of 2-Adic L-Functions.- V. Applications of Zagier’s Formula (I).- VI. Applications of Zagier’s Formula (II).- Author Index.- List of symbols.

Erscheint lt. Verlag 15.12.2010
Reihe/Serie Mathematics and Its Applications ; 511
Zusatzinfo XII, 256 p.
Verlagsort Dordrecht
Sprache englisch
Maße 160 x 240 mm
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
ISBN-10 90-481-5490-1 / 9048154901
ISBN-13 978-90-481-5490-6 / 9789048154906
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich