The Ricci Flow in Riemannian Geometry
A Complete Proof of the Differentiable 1/4-Pinching Sphere Theorem
Seiten
2010
|
2011
Springer Berlin (Verlag)
978-3-642-16285-5 (ISBN)
Springer Berlin (Verlag)
978-3-642-16285-5 (ISBN)
This book focuses on Hamilton's Ricci flow, beginning with a detailed discussion of the required aspects of differential geometry, progressing through existence and regularity theory, compactness theorems for Riemannian manifolds, and Perelman's noncollapsing results, and culminating in a detailed analysis of the evolution of curvature, where recent breakthroughs of Böhm and Wilking and Brendle and Schoen have led to a proof of the differentiable 1/4-pinching sphere theorem.
1 Introduction.- 2 Background Material.- 3 Harmonic Mappings.- 4 Evolution of the Curvature.- 5 Short-Time Existence.- 6 Uhlenbeck's Trick.- 7 The Weak Maximum Principle.- 8 Regularity and Long-Time Existence.- 9 The Compactness Theorem for Riemannian Manifolds.- 10 The F-Functional and Gradient Flows.- 11 The W-Functional and Local Noncollapsing.- 12 An Algebraic Identity for Curvature Operators.- 13 The Cone Construction of Böhm and Wilking.- 14 Preserving Positive Isotropic Curvature.- 15 The Final Argument
From the reviews:
"The book is dedicated almost entirely to the analysis of the Ricci flow, viewed first as a heat type equation hence its consequences, and later from the more recent developments due to Perelman's monotonicity formulas and the blow-up analysis of the flow which was made thus possible. ... is very enjoyable for specialists and non-specialists (of curvature flows) alike." (Alina Stancu, Zentralblatt MATH, Vol. 1214, 2011)Erscheint lt. Verlag | 25.11.2010 |
---|---|
Reihe/Serie | Lecture Notes in Mathematics |
Zusatzinfo | XVIII, 302 p. 13 illus., 2 illus. in color. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 484 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Schlagworte | 35-XX, 53-XX, 58-XX • Partial differential equations • Ricci Flow • Riemannian Geometry • Sphere theorem |
ISBN-10 | 3-642-16285-1 / 3642162851 |
ISBN-13 | 978-3-642-16285-5 / 9783642162855 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 83,90