Geometrical Methods in the Theory of Ordinary Differential Equations
Springer-Verlag New York Inc.
978-0-387-96649-6 (ISBN)
1 Special Equations.- § 1. Differential Equations Invariant under Groups of Symmetries.- § 2. Resolution of Singularities of Differential Equations.- § 3. Implicit Equations.- § 4. Normal Form of an Implicit Differential Equation in the Neighborhood of a Regular Singular Point.- § 5. The Stationary Schrödinger Equation.- § 6. Geometry of a Second-Order Differential Equation and Geometry of a Pair of Direction Fields in Three-Dimensional Space.- 2 First-Order Partial Differential Equations.- § 7. Linear and Quasilinear First-Order Partial Differential Equations.- § 8. The Nonlinear First-Order Partial Differential Equation.- § 9. A Theorem of Frobenius.- 3 Structural Stability.- § 10. The Notion of Structural Stability.- §11. Differential Equations on the Torus.- § 12. Analytic Reduction of Analytic Circle Diffeomorphisms to a Rotation.- § 13. Introduction to the Hyperbolic Theory.- § 14. Anosov Systems.- § 15. Structurally Stable Systems Are Not Everywhere Dense.- 4 Perturbation Theory.- § 16. The Averaging Method.- § 17. Averaging in Single-Frequency Systems.- § 18. Averaging in Systems with Several Frequencies.- § 19. Averaging in Hamiltonian Systems.- § 20. Adiabatic Invariants.- § 21. Averaging in Seifert’s Foliation.- 5 Normal Forms.- § 22. Formal Reduction to Linear Normal Forms.- § 23. The Case of Resonance.- § 24. Poincaré and Siegel Domains.- § 25. Normal Form of a Mapping in the Neighborhood of a Fixed Point.- § 26. Normal Form of an Equation with Periodic Coefficients.- § 27. Normal Form of the Neighborhood of an Elliptic Curve.- § 28. Proof of Siegel’s Theorem.- 6 Local Bifurcation Theory.- § 29. Families and Deformations.- § 30. Matrices Depending on Parameters and Singularities of the Decrement Diagram.- §31. Bifurcations of Singular Points of a Vector Field.- § 32. Versal Deformations of Phase Portraits.- § 33. Loss of Stability of an Equilibrium Position.- § 34. Loss of Stability of Self-Sustained Oscillations.- § 35. Versal Deformations of Equivariant Vector Fields on the Plane.- § 36. Metamorphoses of the Topology at Resonances.- § 37. Classification of Singular Points.- Samples of Examination Problems.
Reihe/Serie | Grundlehren der mathematischen Wissenschaften ; 250 |
---|---|
Übersetzer | J. Szücs |
Zusatzinfo | XIII, 351 p. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
ISBN-10 | 0-387-96649-8 / 0387966498 |
ISBN-13 | 978-0-387-96649-6 / 9780387966496 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich