Explicit Brauer Induction
With Applications to Algebra and Number Theory
Seiten
2011
Cambridge University Press (Verlag)
978-0-521-17273-8 (ISBN)
Cambridge University Press (Verlag)
978-0-521-17273-8 (ISBN)
Explicit Brauer Induction is an important technique in algebra, discovered by the author in 1986. It solves an old problem, giving a canonical formula for Brauer's induction theorem. In this 1994 book it is derived algebraically, following a method of R. Boltje - thereby making the technique, previously topological, accessible to algebraists. Once developed, the technique is used, by way of illustration, to re-prove some important known results in new ways and to settle some outstanding problems. As with Brauer's original result, the canonical formula can be expected to have numerous applications and this book is designed to introduce research algebraists to its possibilities. For example, the technique gives an improved construction of the Oliver–Taylor group-ring logarithm, which enables the author to study more effectively algebraic and number-theoretic questions connected with class-groups of rings.
Preface; 1. Representations; 2. Induction theorems; 3. GL2Fq; 4. The class-group of a group-ring; 5. A class-group miscellany; 6. Complete discrete valuation fields; 7. Galois module structure.
Erscheint lt. Verlag | 17.2.2011 |
---|---|
Reihe/Serie | Cambridge Studies in Advanced Mathematics |
Zusatzinfo | Worked examples or Exercises |
Verlagsort | Cambridge |
Sprache | englisch |
Maße | 152 x 229 mm |
Gewicht | 620 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie | |
ISBN-10 | 0-521-17273-X / 052117273X |
ISBN-13 | 978-0-521-17273-8 / 9780521172738 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2022)
Springer Spektrum (Verlag)
CHF 55,95