Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Finitely Axiomatizable Theories - Mikhail G. Peretyat'kin

Finitely Axiomatizable Theories

Buch | Hardcover
294 Seiten
1997
Kluwer Academic/Plenum Publishers (Verlag)
978-0-306-11062-7 (ISBN)
CHF 299,55 inkl. MwSt
This is the only monograph devoted to the expressibility of finitely axiomatizable theories, a classical subject in mathematical logic. Also included in this unique text are solutions to both the Vaught-Morely problem and the Hanf problem, and a number of new natural questions that provide prospects for further development of the theory.
This is the only monograph devoted to the expressibility of finitely axiomatizable theories, a classical subject in mathematical logic. The volume summarizes investigations in the field that have led to much of the current progress, treating systematically all positive results concerning expressibility. Also included in this unique text are solutions to both the Vaught-Morely problem and the Hanf problem, and a number of new natural questions that provide prospects for further development of the theory.

Interpretations. A Classification to Property Lists. Reductions of Signatures. Quasi-Succession of Morley Rank 2. Constructions with Empty Property List. Constructions with Unary Property List. Rigid Quasi-Succession. Proof of the Main Theorem. Existence Theorems. Complexity of Semantic Classes. Universal Classes of Models. Polar Construction and Analogues of Rice Theorem. Generalization Intelligence in Predicate Logic. Conclusion. Historical Remarks and Problems. Terminology List. Index of Denotatons. Subject Index.

Erscheint lt. Verlag 30.9.1997
Reihe/Serie Siberian School of Algebra and Logic
Zusatzinfo XIV, 294 p.
Verlagsort New York
Sprache englisch
Maße 156 x 234 mm
Themenwelt Mathematik / Informatik Mathematik Allgemeines / Lexika
Mathematik / Informatik Mathematik Logik / Mengenlehre
ISBN-10 0-306-11062-8 / 0306110628
ISBN-13 978-0-306-11062-7 / 9780306110627
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich