Exterior Differential Systems
Springer-Verlag New York Inc.
978-0-387-97411-8 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
A system of partial differential equations, with any number of inde- pendent and dependent variables and involving partial derivatives of any order, can be written as an exterior differential system. In this case we are interested in integral manifolds on which certain coordinates remain independent. The corresponding notion in exterior differential systems is the independence condition: certain pfaffian forms remain linearly indepen- dent. Partial differential equations and exterior differential systems with an independence condition are essentially the same object.
I. Preliminaries.- 1. Review of Exterior Algebra.- 2. The Notion of an Exterior Differential System.- 3. Jet Bundles.- II. Basic Theorems.- 1. Probenius Theorem.- 2. Cauchy Characteristics.- 3. Theorems of Pfaff and Darboux.- 4. Pfaffian Systems.- 5. Pfaffian Systems of Codimension Two.- III. Cartan-Kahler Theory.- 1. Integral Elements.- 2. The Cartan-Kahler Theorem.- 3. Examples.- IV. Linear Differential Systems.- 1. Independence Condition and Involution.- 2. Linear Differential Systems.- 3. Tableaux.- 4. Tableaux Associated to an Integral Element.- 5. Linear Pfaffian Systems.- 6. Prolongation.- 7. Examples.- 8. Families of Isometric Surfaces in Euclidean Space.- V. The Characteristic Variety.- 1. Definition of the Characteristic Variety of a Differential System.- 2. The Characteristic Variety for Linearc Pfaffian Systems; Examples.- 3. Properties of the Characteristic Variety.- VI. Prolongation Theory.- 1. The Notion of Prolongation.- 2. Ordinary Prolongation.- 3. The Prolongation Theorem.- 4. The Process of Prolongation.- VII. Examples.- 1. First Order Equations for Two Functions of Two Variables.- 2. Finiteness of the Web Rank.- 3. Orthogonal Coordinates.- 4. Isometric Embedding.- VIII. Applications of Commutative Algebra and Algebraic Geometry to the Study of Exterior Differential Systems.- 1. Involutive Tableaux.- 2. The Cartan-Poincare Lemma, Spencer Cohomology.- 3. The Graded Module Associated to a Tableau; Koszul Homology.- 4. The Canonical Resolution of an Involutive Module.- 5. Localization; the Proofs of Theorem 3.2 and Proposition 3.8.- 6. Proof of Theorem 3.8 in Chapter V; Guillemin's Normal Form.- 7. The Graded Module Associated to a Higher Order Tableau.- IX. Partial Differential Equations.- 1. An Integrability Criterion.- 2. Quasi-Linear Equations.- 3. Existence Theorems.- X. Linear Differential Operators.- 1. Formal Theory and Complexes.- 2. Examples.- 3. Existence Theorems for Elliptic Equations.
Reihe/Serie | Mathematical Sciences Research Institute Publications ; 18 |
---|---|
Zusatzinfo | biography |
Verlagsort | New York, NY |
Sprache | englisch |
Gewicht | 875 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
ISBN-10 | 0-387-97411-3 / 0387974113 |
ISBN-13 | 978-0-387-97411-8 / 9780387974118 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich