Nicht aus der Schweiz? Besuchen Sie lehmanns.de
More Games of No Chance -

More Games of No Chance

Richard Nowakowski (Herausgeber)

Buch | Softcover
548 Seiten
2011
Cambridge University Press (Verlag)
978-0-521-15563-2 (ISBN)
CHF 81,95 inkl. MwSt
This fascinating 2003 collection of articles runs the gamut from new theoretical approaches, both computational and mathematical, to other games such as Amazons, Chomp, Dot-and-Boxes, Go, Chess, and Hex. Includes an updated bibliography by A. Fraenkel and a list of combinatorial game theory problems by R. K. Guy.
This 2003 book provides an analysis of combinatorial games - games not involving chance or hidden information. It contains a fascinating collection of articles by some well-known names in the field, such as Elwyn Berlekamp and John Conway, plus other researchers in mathematics and computer science, together with some top game players. The articles run the gamut from theoretical approaches (infinite games, generalizations of game values, 2-player cellular automata, Alpha-Beta pruning under partial orders) to other games (Amazons, Chomp, Dot-and-Boxes, Go, Chess, Hex). Many of these advances reflect the interplay of the computer science and the mathematics. The book ends with a bibliography by A. Fraenkel and a list of combinatorial game theory problems by R. K. Guy. Like its predecessor, Games of No Chance, this should be on the shelf of all serious combinatorial games enthusiasts.

Part I. The Big Picture: 1. Idempotents among partisan games Elwyn Berlekamp; 2. On the lattice Structure of finite games Dan Calistrate, Marc Paulhus and David Wolfe; 3. More infinite games John H. Conway; 4. Alpha-Beta pruning under partial orders Matthew L. Ginsberg; 5. The abstract structure of the group of games David Moews; Part II. The Old Classics: 6. Higher numbers in pawn endgames on large chessboards Noam D. Elkies; 7. Restoring fairness to Dukego Greg Martin; 8. Go thermography: the 4/21/98 Jiang-Rui endgame Bill Spight; 9. An application of mathematical game theory to go endgames: some width-two-entrance rooms with and without Kos Takenobu Takizawa; 10. Go endgames are PSPACE-hard David Wolfe; 11. Global threats in combinatorial games: a computation model with applications to chess endgames Fabian Mäser; 12. The games of hex: the hierarchical approach Vadim V. Anshelevich; 13. Hypercube tic-tac-toe Solomon W. Golomb and Alfred W. Hales; 14. Transfinite chomp Scott Huddleston and Jerry Shurman; 15. A memory efficient retrograde algorithm and its application to Chinese chess endgames Ren Wu and Donald F. Beal; Part III. The New Classics: 16: The 4G4G4G4G4 problems and solutions Elwyn Berlekamp; 17. Experiments in computer amazons Martin Müller and Theodore Tegos; 18. Exhaustive search in amazons Raymond Georg Snatzke; 19. Two-player games on cellular automata Aviezri S. Fraenkel; 20. Who wins domineering on rectangular boards? Michael Lachmann, Christopher Moore and Ivan Rapaport; 21. Forcing your opponent to stay in control of a loony dot-and-boxes endgame Elwyn Berlekamp and Katherine Scott; 22. 1 x n Konane: a summary of results Alice Chan and Alice Tsai; 23. 1-dimensional peg solitaire, and duotaire Christopher Moore and David Eppstein; 24. Phutball endgames are hard Erik D. Demaine, Martin L. Demaine and David Eppstein; 25. One-dimensional phutball J. P. Grossman and Richard J. Nowakowski; 26. A symmetric strategy in graph avoidance games Frank Harary, Wolfgang Slany and Oleg Verbitsky; 27. A simple FSM-based proof of the additive periodicity of the Sprague-Grundy function of Wythoff's games Howard Landman; Part IV. Puzzles and Life: 28. The complexity of clickomania Therese C. Biedl, Erik D. Demaine, Martin L. Demaine, Rudolf Fleischer, Lars Jacobsen and Ian Munro; 29. Coin-moving puzzles Erik D. Demaine, Martin L. Demaine and Helena A. Verrill; 30. Searching for spaceships David Eppstein; Part V: Surveys: 31. Unsolved puzzles in combinatorial game theory: updated Richard K. Guy and Richard J. Nowakowski; Bibliography of combinatorial games: updated Aviezri S. Fraenkel.

Erscheint lt. Verlag 17.2.2011
Reihe/Serie Mathematical Sciences Research Institute Publications
Zusatzinfo Worked examples or Exercises
Verlagsort Cambridge
Sprache englisch
Maße 156 x 234 mm
Gewicht 760 g
Themenwelt Mathematik / Informatik Mathematik Graphentheorie
ISBN-10 0-521-15563-0 / 0521155630
ISBN-13 978-0-521-15563-2 / 9780521155632
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Numbers and Counting, Groups, Graphs, Orders and Lattices

von Volker Diekert; Manfred Kufleitner; Gerhard Rosenberger …

Buch | Softcover (2023)
De Gruyter (Verlag)
CHF 89,95