Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Medical Biostatistics for Complex Diseases

Buch | Hardcover
XXVIII, 384 Seiten
2010 | 1. Auflage
Wiley-VCH (Verlag)
978-3-527-32585-6 (ISBN)

Lese- und Medienproben

Medical Biostatistics for Complex Diseases -
CHF 166,60 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
- Rapidly increasing audience due to the fast proliferation of high-through put methods in clinical and biomedical research.

- Nice complementation for the Wiley book cluster on Bioinformatics

- Of interest for academia and industry alike

- High profile authors from the mathematical community.
Eine Sammlung von Methoden und Hilfsmitteln zur Analyse von Daten, die in Hochdurchsatz-Studien der wichtigsten Krankheiten der westlichen Industrieländer (u.a. Krebs, Herz- und Gefäßkrankheiten) gewonnen wurden. In allen Fällen spielen mehrere Faktoren und große Datensätze die beherrschende Rolle bei der Wahl der Algorithmus. Die meisten Beiträge der Monographie stammen von Mathematikern. Interessant ist das Buch vorrangig für Forscher und Kliniker, die mit der Auswertung des Datenmaterials befasst sind, denen aber ein tiefer gehender Hintergrund in Mathematik und Statistik fehlt.

Frank Emmert-Streib studied physics at the University of Siegen, Germany, and received his PhD in theoretical physics from the University of Bremen. He was a postdoctoral research associate in the department for Bioinformatics at the Stowers Institute for Medical Research in Kansas City, USA, and a senior fellow in the departments of Biostatistics and Genome Sciences at the University of Washington, Seattle, USA. Currently he is an assistant professor at the Queen's University Belfast at the Center for Cancer Research and Cell Biology, leading the Computational Biology and Machine Learning group. Frank Emmert-Streib's research interests are in the field of computational biology, biostatistics, network biology and machine learning, focusing on the development and application of methods to analyze high-dimensional, large-scale data from molecular biology. Matthias Dehmer studied mathematics at the University of Siegen, Germany and received his PhD in computer science from the Darmstadt University of Technology. Following this, he was a research fellow at the Vienna Bio Center, Austria, and at the Vienna University of Technology. He is currently an associate professor at UMIT - The Health and Life Sciences University in Hall in Tirol, Austria. His research interests are in bioinformatics, systems biology, complex networks, statistics and information theory. In particular, Matthias Dehmer is working on machine learning-based methods to design new data analysis methods for solving problems in computational and systems biology.

Preface (Emmert-Streib and Dehmer)
GENERAL BIOLOGICAL AND STATISTICAL BASICS
The biology of MYC in health and disease: a high altitude view (Turner, Bird and Refaeli)
Cancer Stem Cells - Finding and Hitting the Roots of Cancer (Buss and Ho)
Multiple Testing Methods (Farcomeni)
STATISTICAL AND COMPUTATIONAL ANALYSIS METHODS
Making Mountains Out of Molehills: Moving from Single Gene to Pathway Based Models of Colon Cancer Progression (Edelman, Garman, Potti, Mukherjee)
Gene-Set Expression Analysis: Challenges and Tools (Oron)
Hotelling's T-2 multivariate profiling for detecting differential expression in microarrays (Lu, Liu, Deng)
Interpreting differential coexpression of gene sets (Ju Han Kim, Sung Bum Cho, Jihun Kim)
Multivariate analysis of microarray data: Application of MANOVA (Hwang and Park)
Testing Significance of a Class of Genes (Chen and Tsai)
Differential dependency network analysis to identify topological changes in biological networks (Zhang, Li, Clarke, Hilakivi-Clarke and Wang)
An Introduction to Time-Varying Connectivity Estimation for Gene Regulatory Networks (Fujita, Sato, Almeida Demasi, Miyano, Cleide Sogayar, and Ferreira)
A systems biology approach to construct a cancer-perturbed protein-protein interaction network for apoptosis by means of microarray and database mining (Chu and Chen)
NN, title not confirmed (Fishel, Ruppin)
Kernel Classification Methods for Cancer Microarray Data (Kato and Fujibuchi)
Predicting Cancer Survival Using Expression Patterns (Reddy, Kronek, Brannon, Seiler, Ganesan, Rathmell, Bhanot)
Integration of microarray data sets (Kim and Rha)
Model Averaging For Biological Networks With Prior Information (Mukherjeea, Speed and Hill)

Erscheint lt. Verlag 22.4.2010
Reihe/Serie Quantitative and Network Biology
Sprache englisch
Maße 170 x 240 mm
Gewicht 905 g
Themenwelt Informatik Weitere Themen Bioinformatik
Naturwissenschaften Biologie
Schlagworte Bioinformatics & Computational Biology • Bioinformatics & Computational Biology • Bioinformatik • Bioinformatik u. Computersimulationen in der Biowissenschaften • Biostatistics • Biostatistik • Biowissenschaften • Life Sciences • Medical Science • Medical Statistics & Epidemiology • Medical Statistics & Epidemiology • Medizin • Medizinische Statistik u. Epidemiologie • Statistics • Statistik
ISBN-10 3-527-32585-9 / 3527325859
ISBN-13 978-3-527-32585-6 / 9783527325856
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Nadine Reinicke

Buch | Softcover (2021)
Urban & Fischer in Elsevier (Verlag)
CHF 22,50
Grundlagen, Algorithmen, Anwendungen

von Rainer Merkl

Buch | Hardcover (2022)
Wiley-VCH (Verlag)
CHF 109,95