Yang-Mills Connections on Orientable and Nonorientable Surfaces
Seiten
2009
American Mathematical Society (Verlag)
978-0-8218-4491-5 (ISBN)
American Mathematical Society (Verlag)
978-0-8218-4491-5 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
Studies the Yang-Mills functional on the space of connections on a principal $G_{/mathbb{R}}$-bundle over a closed, connected, nonorientable surface, where $G_{/mathbb{R}}$ is any compact connected Lie group. They obtain explicit descriptions of equivariant Morse stratification of Yang-Mills functional on orientable and nonorientable surfaces for non-unitary classical groups $SO(n)$ and $Sp(n)$.
In ""The Yang-Mills equations over Riemann surfaces"", Atiyah and Bott studied Yang-Mills functional over a Riemann surface from the point of view of Morse theory. In ""Yang-Mills Connections on Nonorientable Surfaces"", the authors study Yang-Mills functional on the space of connections on a principal $G_{/mathbb{R}}$-bundle over a closed, connected, nonorientable surface, where $G {/mathbb{R}}$ is any compact connected Lie group. In this monograph, the authors generalize the discussion in ""The Yang-Mills equations over Riemann surfaces"" and ""Yang-Mills Connections on Nonorientable Surfaces"". They obtain explicit descriptions of equivariant Morse stratification of Yang-Mills functional on orientable and nonorientable surfaces for non-unitary classical groups $SO(n)$ and $Sp(n)$.
In ""The Yang-Mills equations over Riemann surfaces"", Atiyah and Bott studied Yang-Mills functional over a Riemann surface from the point of view of Morse theory. In ""Yang-Mills Connections on Nonorientable Surfaces"", the authors study Yang-Mills functional on the space of connections on a principal $G_{/mathbb{R}}$-bundle over a closed, connected, nonorientable surface, where $G {/mathbb{R}}$ is any compact connected Lie group. In this monograph, the authors generalize the discussion in ""The Yang-Mills equations over Riemann surfaces"" and ""Yang-Mills Connections on Nonorientable Surfaces"". They obtain explicit descriptions of equivariant Morse stratification of Yang-Mills functional on orientable and nonorientable surfaces for non-unitary classical groups $SO(n)$ and $Sp(n)$.
Introduction; Topology of Gauge group; Holomorphic principal bundles over Riemann surfaces; Yang-Mills connections and representation varieties; Yang-Mills $SO(2n+1)$-connections; Yang-Mills $SO(2n)$-connections; Yang-Mills $Sp(n)$-connections; Appendix A. Remarks on Laumon-Rapoport formula; Bibliography.
Erscheint lt. Verlag | 26.1.2010 |
---|---|
Reihe/Serie | Memoirs of the American Mathematical Society |
Verlagsort | Providence |
Sprache | englisch |
Gewicht | 180 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
ISBN-10 | 0-8218-4491-1 / 0821844911 |
ISBN-13 | 978-0-8218-4491-5 / 9780821844915 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 83,90